Search found 1077 matches

by Marius Mainea
Mon Sep 20, 2010 7:44 pm
Forum: Clasa a IX-a
Topic: Inegalitate din RMT 3/2010
Replies: 1
Views: 61

Inegalitatea este echivalenta cu

\( \sum\frac{(a-b)^2c}{(a+c)(b+c)(2a+b+c)(2b+a+c)}\ge 0 \)
by Marius Mainea
Sun Sep 12, 2010 5:00 am
Forum: Analiza matematica
Topic: Limita unui sir
Replies: 5
Views: 243

Eu am folosit ,,cleste''

\( a_n=\sum {\frac{k-\frac{n}{2}-\frac{1}{16}}{\sqrt{n^2+k}+n+\frac{1}{4}} \)
by Marius Mainea
Wed Sep 08, 2010 7:49 pm
Forum: Analiza matematica
Topic: Limita unui sir
Replies: 5
Views: 243

Dac am facut bine calculele \( \frac{7}{32} \) :wink:
by Marius Mainea
Sat Sep 04, 2010 11:26 pm
Forum: Clasa a VII-a
Topic: Dreapta perpendiculara pe bisectoare
Replies: 2
Views: 89

Demonstram urmatoarea proprietate: ,, Daca ABC triunghi si A_1 respectiv A_2 sunt picioarele medianei si bisectoarei din A iar K este un punct pe AA_1 astfel incat CK\perp AA_2 , atunci A_1K\parallel AC '' Dem: Din teorema Menelaus \frac{CK}{KD}=\frac{c}{b} Unde \{D\}=CK\cap AB Se arata apoi folosin...
by Marius Mainea
Fri Sep 03, 2010 7:49 pm
Forum: Algebra
Topic: O identitate simpla cu det si tr
Replies: 2
Views: 132

\( (\lambda_1^3+\lambda_1^2+\lambda_1+1)(\lambda_2^3+\lambda_2^2+\lambda_2+1)=(1+\lambda_1+\lambda_2+\lambda_1\lambda_2)[(1-\lambda_1\lambda_2)^2+(\lambda_1+\lambda_2)^2] \)
by Marius Mainea
Tue Aug 31, 2010 7:47 pm
Forum: Clasa a V-a
Topic: Numere cu suma 53
Replies: 2
Views: 373

:) Foarte bine Ana, Bine ai venit pe forum :) O sa fac eu unele precizari Fie multimile A=\{0,1,2...53\} si B=\{54,55,......\} Presupunand prin absurd ca nu exista 2 cu suma 53 , rezulta ca in A avem maxim 27 de numere ( principiul cutiei (0,53);(1,52);...(26,27)) restul fiind in B. Atunci suma celo...
by Marius Mainea
Fri Aug 27, 2010 9:05 pm
Forum: Clasa a VII-a
Topic: Perechi de drepte care se intalnesc pe circumcerc.
Replies: 1
Views: 124

\( \triangle{ASM}\sim\triangle{ACN} \) si de aici \( \angle{ASM}=\angle{ACN} \)
by Marius Mainea
Tue Jun 15, 2010 8:46 pm
Forum: Geometrie
Topic: IMAC Seniori 15 mai 2010 Ziua 1 Subiectul 3
Replies: 1
Views: 52

Fie \{P\}=BM\cap KL si \{Q\}=AC\cap BM Atunci \frac{KP}{PL}=\frac{AQ}{QC}\cdot\frac{BK}{BL}\cdot\frac{BC}{BA} si de aici rezulta ca Q e mijloc. Intr-adevar in triunghiurile BML si BMK din teorema sinusurilor \frac{sin \angle{MBL}}{sin \angle{MBK}}=\frac{sin \angle{C}}{sin \angle{A}} Pe de alta parte...
by Marius Mainea
Fri Jun 11, 2010 7:25 pm
Forum: Clasa a IX-a
Topic: Inegalitate.
Replies: 1
Views: 88

Folosind inegalitatea lui Schur

\( \sum\frac{x^3}{y^3}+3\ge\sum_{sym}(\frac{x}{y})^2(\frac{y}{z})=\sum_{cyc}\frac{x^2}{yz}+\sum_{cyc}\frac{yz}{x^2}\ge RHS+3 \)
by Marius Mainea
Thu Jun 03, 2010 11:25 pm
Forum: Clasa a VII-a
Topic: Problema clasica
Replies: 2
Views: 96

Daca \( \mathcal{P}=\{p_1,p_2,...,p_n\} \) ar fi finita atunci

\( n=p_1p_2...p_n+1 \) ar mai avea un factor prim.

Pentru a doua \( n=\overline{\underbrace{222..2}_{kori}\underbrace{111...111}_{2^k-2kori}} \) \( k\in\mathbb{N^{\ast}} \)
by Marius Mainea
Thu Jun 03, 2010 8:50 pm
Forum: Clasa a IX-a
Topic: Trei inegalitati SHL-2010
Replies: 1
Views: 184

1) \( LHS\ge (x+\frac{y}{2})(t+\frac{z}{2})+\frac{3yz}{4}+(y-\frac{z}{2})(x-\frac{t}{2})+\frac{3zt}{4}=RHS \)

2) Deconditionand obtinem :

\( \pro(x^3+y^3)\ge2x^2y^2z^2(xyz+\sum x^3) \)

adica \( \sum_{sym}x^6y^3\ge\sum_{sym}x^5y^2z^2 \) (Muirhead)
by Marius Mainea
Thu Jun 03, 2010 8:17 pm
Forum: Clasa a VI-a
Topic: Probl. (own) "slicing" (foarte simpla, de debut !)
Replies: 1
Views: 150

Pentru lema:

Inaltimea AD intalneste pe BM si CM in N si respectiv P

Atunci BN , BP sunt trisectoarele unghiului B iar CN si CP sunt trisectoarele unghiului C.

Apoi \( \triangle MNC\equiv\triangle ANC \) de unde \( AC=MC \) si apoi \( \angle{BAM}=15^{\circ} \)
by Marius Mainea
Thu Jun 03, 2010 12:43 pm
Forum: Geometrie
Topic: IMAC 2010 Problema 4
Replies: 4
Views: 253

\( \vec{MN}=\frac{\vec{AB}+\vec{CD}}{2} \)
by Marius Mainea
Thu Jun 03, 2010 12:31 pm
Forum: Geometrie
Topic: IMAC 2010 Problema 3
Replies: 13
Views: 516

pai nu e adevarat :( totdeauna.

Impartind prin \( y^3 \) si notand \( \frac{x}{y}=t \) obtinem


\( 3t^3-5t^2-t+3\ge 0 \)


sau \( (t-1)(3t^2-2t-3)\ge 0 \)
by Marius Mainea
Tue May 25, 2010 8:42 am
Forum: Clasa a VII-a
Topic: Problema geometrie SHL-2010
Replies: 2
Views: 159

In loc de AB trebuie BN si apoi se aplica Menelaus.
by Marius Mainea
Thu May 20, 2010 9:12 pm
Forum: Intrebari teoretice
Topic: Inegalitate in triunghi
Replies: 1
Views: 397

\( l_a^2+l_b^2+l_c^2\ge 3S\sqrt{3} \)
by Marius Mainea
Thu Apr 15, 2010 9:12 pm
Forum: Analiza matematica
Topic: Shortlist ONM 2010 pb 23
Replies: 4
Views: 426

Nu, evident :wink:

Go to advanced search