Inegalitate din RMT 3/2010
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Inegalitate din RMT 3/2010
Aratati ca daca \( a,\ b,\ c\ge0 \), cel mult unul din numere egal cu \( 0 \) , avem \( \frac{a^{2}+bc}{\left(a+b\right)\left(a+c\right)}+\frac{b^{2}+ca}{\left(b+c\right)\left(b+a\right)}+\frac{c^{2}+ab}{\left(c+a\right)\left(c+b\right)}\ge\frac{a+b}{a+b+2c}+\frac{b+c}{b+c+2a}+\frac{c+a}{c+a+2b} \).
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)