divizor

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
Andreea Udrea
Euclid
Posts: 12
Joined: Thu Oct 23, 2008 7:49 pm

divizor

Post by Andreea Udrea »

Aratati ca numarul 76^63+66^63 se divide la 71.
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Post by Marius Dragoi »

\( 76 \equiv 5 (mod 71) \Rightarrow 76^{63} \equiv 5^{63} (mod 71) \) (1)
\( 66 \equiv -5 (mod 71) \Rightarrow 66^{63} \equiv -{5^{63}} (mod 71) \) (2)
Din (1) si (2) \( \Rightarrow \) \( 76^{63}+66^{63} \equiv 0 (mod 71) \) QED :wink:
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
Marcelina Popa
Bernoulli
Posts: 208
Joined: Wed Mar 05, 2008 3:25 pm
Location: Tulcea
Contact:

Post by Marcelina Popa »

Alta rezolvare, tot la nivelul clasei IX-a: demonstram prin inductie ca
\( 76^{2n+1}+66^{2n+1}\ \vdots \ 71 \),
pentru orice numar natural n.

Mai merge si cu formula binomului lui Newton (clasa a X-a).

Nu cred ca exista vreo rezolvare la nivelul clasei a V-a. Poate doar vreo simulare de inductie.
Post Reply

Return to “Clasa a V-a”