Search found 520 matches
- Mon Sep 20, 2010 6:51 pm
- Forum: Clasa a IX-a
- Topic: Inegalitate din RMT 3/2010
- Replies: 1
- Views: 61
Inegalitate din RMT 3/2010
Aratati ca daca \( a,\ b,\ c\ge0 \), cel mult unul din numere egal cu \( 0 \) , avem \( \frac{a^{2}+bc}{\left(a+b\right)\left(a+c\right)}+\frac{b^{2}+ca}{\left(b+c\right)\left(b+a\right)}+\frac{c^{2}+ab}{\left(c+a\right)\left(c+b\right)}\ge\frac{a+b}{a+b+2c}+\frac{b+c}{b+c+2a}+\frac{c+a}{c+a+2b} \).
- Sun Sep 19, 2010 7:04 pm
- Forum: Clasa a VIII-a
- Topic: Inegalitate noua
- Replies: 1
- Views: 56
Inegalitate noua
Fie \( a,\ b,\ c>0 \). Aratati ca \( 1+\frac{1}{6abc}>\frac{3}{a+b+c} \).
Claudiu Mindrila, Revista de Matematica din Timisoara nr. 3/2010
Claudiu Mindrila, Revista de Matematica din Timisoara nr. 3/2010
- Fri Sep 10, 2010 9:24 am
- Forum: Clasa a IX-a
- Topic: N - centrul de greutate pentru APQ.
- Replies: 1
- Views: 79
Pentru prima implicatie: Scriind puterea lui M fata de w obtinem ca MN=\frac{MB\cdot BC}{MA}=\frac{a^{2}}{2\sqrt{2\left(b^{2}+c^{2}\right)-a^{2}}} si de aici obtinem AN=AM+MN=\frac{\sqrt{2\left(b^{2}+c^{2}\right)-a^{2}}}{2}+\frac{a^{2}}{2\sqrt{2\left(b^{2}+c^{2}\right)-a^{2}}} \ (1) . Deoarece N es...
- Tue Sep 07, 2010 1:05 pm
- Forum: Clasa a X-a
- Topic: f=f^{-1}
- Replies: 0
- Views: 51
f=f^{-1}
Fie \( f:\mathbb{R}\longrightarrow\mathbb{R}, \ f\left(x\right)=x+a\left[x\right]+\left[2x\right],\ a\in\mathbb{Z}^{*} \). Determinati \( a \) astfel incat \( f \) sa fie bijectiva si \( f=f^{-1} \).
- Mon Sep 06, 2010 4:47 pm
- Forum: Clasa a VII-a
- Topic: Si triunghiul dreptunghic este plin de surprize ....
- Replies: 4
- Views: 727
In cele ce urmeaza voi folosi urmatorul rezultat binecunoscut: Lema. Fie un triunghi ABC si M un punct apartinand medianei corespunzatoare laturii BC . Daca \left\{ B^{\prime}\right\} =CM\cap AB,\ \left\{ C^{\prime}\right\} =BM\cap AC atunci B^{\prime}C^{\prime}\parallel BC . Dem. Fie \left\{ D^{\pr...
- Sun Sep 05, 2010 11:44 am
- Forum: Clasa a VII-a
- Topic: Dreapta perpendiculara pe bisectoare
- Replies: 2
- Views: 89
Daca \left\{ P\right\} =AA_{2}\cap CK , B^{\prime} este mijlocul lui AC si \left\{ O\right\} =PB^{\prime}\cap A_{2}K este cunoscut faptul ca P,\ O,\ A_{1},\ B^{\prime} sunt coliniare. Asadar O este mijlocul lui A_{2}K .Cum A_{2}K\parallel AC si PB^{\prime}\parallel AB obtinem \widehat{PA_{2}K}=\wide...
- Sat Sep 04, 2010 6:55 pm
- Forum: Clasa a VII-a
- Topic: Dreapta perpendiculara pe bisectoare
- Replies: 2
- Views: 89
Dreapta perpendiculara pe bisectoare
In \( \triangle{ABC} \) sunt duse mediana \( AA_{1} \) si bisectoarea \( AA_{2} \), iar punctul \( K \) este un punct pe dreapta \( AA_{1} \) a. i. \( KA_{2} \parallel AC \).
Demonstrati ca \( AA_{2} \perp KC \)
Demonstrati ca \( AA_{2} \perp KC \)
- Tue Aug 31, 2010 8:26 pm
- Forum: Clasa a X-a
- Topic: Afixele unui triunghi echilateral
- Replies: 2
- Views: 303
Solutie. Daca x=a-b , y=b-c , z=c-a atunci x+y+z=x^{5}+y^{5}+z^{5}=0 . Fie polinomul P\left(t\right)=t^{3}-mt^{2}+nt-p care are radacinile x,\ y,\ z . Din relatiile lui Viete avem m=0 , deci P\left(t\right)=t^{3}+nt-p . Avem: \left\{ \begin{array}{c} P\left(x\right)=0\\ P\left(y\right)=0\\ P\left(z...
- Sun Aug 29, 2010 12:32 am
- Forum: Clasa a X-a
- Topic: Inegalitate din G. M. 6/2010
- Replies: 1
- Views: 68
Inegalitate din G. M. 6/2010
Fie \( m,\ n\in\mathbb{N}^{*},\ m\le2n \) si \( a,\ b,\ c>0. \)Sa se arate ca: \( \frac{a^{m}}{b^{n}+c^{n}}+\frac{b^{m}}{c^{n}+a^{n}}+\frac{c^{m}}{a^{n}+b^{n}}\ge\frac{3}{2}\sqrt{\frac{a^{m}+b^{m}+c^{m}}{a^{2n-m}+b^{2n-m}+c^{2n-m}}}. \)
Claudiu Mindrila, Gazeta Matematica nr. 6/2010
Claudiu Mindrila, Gazeta Matematica nr. 6/2010
- Wed Jun 16, 2010 9:27 pm
- Forum: Chat de voie
- Topic: Campionatul Modial 2010
- Replies: 23
- Views: 365
- Fri Jun 11, 2010 3:02 pm
- Forum: Clasa a IX-a
- Topic: Inegalitate.
- Replies: 1
- Views: 88
Inegalitate.
Sa se demonstreze inegalitatea: \( \frac{x^{3}}{y^{3}}+\frac{y^{3}}{z^{3}}+\frac{z^{3}}{x^{3}}\ge\frac{1}{2}\left(\frac{x^{2}}{yz}+\frac{y^{2}}{zx}+\frac{z^{2}}{xy}\right)+\frac{3}{2},\ \forall x,\ y,\ z\in\left(0,\ +\infty\right) \).
- Thu Jun 03, 2010 1:02 pm
- Forum: Geometrie
- Topic: IMAC 2010 Problema 3
- Replies: 13
- Views: 516
Problema nu mi se pare gresita. Presupunem ca \widehat{B}\le\widehat{C}\Longrightarrow\widehat{B}\le45^{\circ} . Deoarece \cos C=\sin B si \tan C=\frac{1}{\tan B} avem ca: LHS=\frac{\tan^{2}B+\frac{1}{\tan^{2}B}}{1+\sin^{2}B}\ge\frac{2}{1+\frac{1}{2}}=\frac{4}{3} , iar egalitate avem cand \tan{B}=1 .
- Wed Jun 02, 2010 4:44 pm
- Forum: Inegalitati
- Topic: IMAC 2010 Problema 2
- Replies: 1
- Views: 122
Avem: \sum\frac{a^{2}b^{2}\left(a+b\right)}{a^{2}+b^{2}}\le\sum\frac{a^{2}b^{2}\left(a+b\right)}{2ab}=\frac{1}{2}\sum ab\left(a+b\right)\le\frac{1}{2}\sum\left(a^{3}+b^{3}\right)=\sum a^{3} , unde mai sus am folosit inegalitatea mediilor si faptul ca \sum\left(a-b\right)^{2}\left(a+b\right)\ge0\Long...
- Sun May 23, 2010 5:18 pm
- Forum: Geometrie
- Topic: JBTST V 2010, Problema 2
- Replies: 2
- Views: 171
Intai DF\parallel AC\Longrightarrow\widehat{ADF}=\widehat{DAC} . Fie G centrul de greutate al triunghiului ABC . Acum, \widehat{DAC}=\widehat{ABE}\Longleftrightarrow\widehat{ABE}=\widehat{ADF}\Longleftrightarrow\widehat{FBG}=\widehat{FDG}\Longleftrightarrow BDFG\ \text{inscriptibil}\Longleftrightarr...
- Sun May 23, 2010 2:40 pm
- Forum: Inegalitati
- Topic: JBTST V 2010, Problema 3
- Replies: 2
- Views: 165
- Fri May 14, 2010 8:51 am
- Forum: Clasa a IX-a
- Topic: Concurenta data de o relatie
- Replies: 2
- Views: 227
- Thu May 13, 2010 1:16 pm
- Forum: Geometrie
- Topic: Trapez sau paralelogram
- Replies: 1
- Views: 169
Scriind relatia medianei si folosind ipoteza obtinem: \frac{IM^{2}}{AB^{2}}=\frac{IN^{2}}{CD^{2}}\Longrightarrow\frac{AB^{2}}{CD^{2}}=\frac{IM^{2}}{IN^{2}}=\frac{2\left(IA^{2}+IB^{2}\right)-AB^{2}}{2\left(IC^{2}+ID^{2}\right)-CD^{2}}\Longrightarrow\frac{AB^{2}}{IA^{2}+IB^{2}}=\frac{CD^{2}}{IC^{2}+ID...