Search found 145 matches
- Mon Sep 13, 2010 2:38 pm
- Forum: Analiza matematica
- Topic: Shortlist ONM 2010 pb 23
- Replies: 4
- Views: 426
- Wed Jun 16, 2010 9:45 pm
- Forum: Chat de voie
- Topic: Campionatul Modial 2010
- Replies: 23
- Views: 365
Eu nu inteleg care realitate ,asta e Spania ,cea care a castigat Euro2008 ,nu e vreo diferenta intre echipa de atunci si cea din meciul de azi ,nici ca stil de joc si nici ca jucatori .O singura tactica ii poate bate ,ce a facut Elvetia azi (care e cam tot aia cu ce a facut SUA anu trecut).Daca au s...
- Wed Jun 16, 2010 9:24 pm
- Forum: Chat de voie
- Topic: Campionatul Modial 2010
- Replies: 23
- Views: 365
- Wed Jun 16, 2010 7:23 pm
- Forum: Chat de voie
- Topic: Campionatul Modial 2010
- Replies: 23
- Views: 365
Cu acelasi joc Spania poate sa bata orice echipa care nu sta cu 9 oameni in aparare ,cu acelasi joc .Spania joaca acelasi fotbal ca si Barcelona ,iar pe Barcelona nu o prea bate nimeni daca nu sta in aparare cum a stat Inter .Eu totusi zic ca Spania e favorita ,chiar daca acum se prefigureaza pt opt...
- Tue Jun 15, 2010 10:59 pm
- Forum: Algebra
- Topic: IMAC Seniori 15 mai 2010 Ziua 1 Subiectul 2
- Replies: 1
- Views: 79
Avem f(0)=0 evident si f(x)=f(x-y+y)=f(x-y)+f(y)+f(xy-y^2)=f(x)+f(-y)+f(y)+f(-xy)+f(xy-y^2) =>f(-y)+f(y)+f(-xy)+f(xy-y^2)=0 .Adun cu f(-y^2) si rezulta f(-xy)+f(xy-y^2)=f(-y^2) .Acum f(xy-y^2)=f(xy)+f(-y^2)+f(-xy^3) .Deci f(-xy)+f(xy)+f(-xy^3)=0 rezulta ca f(-xy^3)=f(-x^2y^2) .Deci f(-x)=f(-x^2) si ...
- Tue Jun 15, 2010 10:31 pm
- Forum: Chat de voie
- Topic: Campionatul Modial 2010
- Replies: 23
- Views: 365
- Tue Jun 15, 2010 8:15 pm
- Forum: Chat de voie
- Topic: Campionatul Modial 2010
- Replies: 23
- Views: 365
- Tue Jun 15, 2010 8:14 pm
- Forum: Chat de voie
- Topic: Campionatul Modial 2010
- Replies: 23
- Views: 365
- Tue Jun 15, 2010 8:12 pm
- Forum: Chat de voie
- Topic: Campionatul Modial 2010
- Replies: 23
- Views: 365
- Tue Jun 15, 2010 8:07 pm
- Forum: Chat de voie
- Topic: Campionatul Modial 2010
- Replies: 23
- Views: 365
- Sun Jun 13, 2010 10:47 pm
- Forum: Clasa a X-a
- Topic: Rafinare a inegalitatii lui Gerettsen
- Replies: 7
- Views: 389
- Tue Apr 13, 2010 7:56 pm
- Forum: Analiza matematica
- Topic: Shortlist ONM 2010 ,pb25
- Replies: 0
- Views: 179
Shortlist ONM 2010 ,pb25
Fie \( p>0 \) si \( f:[0,1]\rightarrow\mathbb{R} \) continua ,concava a.i. \( f(0)=1 \).Aratati ca \( (p+1)\int_0^1 x^{2p}f(x)dx+\frac{2p-1}{8p+4}\le(\int_0^1 f(x)dx)^2 \) si aflati cazurile de egalitate.
- Tue Apr 13, 2010 7:53 pm
- Forum: Analiza matematica
- Topic: Shortlist ONM 2010,pb 24
- Replies: 9
- Views: 420
Shortlist ONM 2010,pb 24
Fie \( f:[0,1]\rightarrow\mathbb{R} \) continua si n natural \( n\ge3 \).Aratati ca exista o progresie aritmetica de n numere \( a_1,...,a_n \) a.i. \( \int_0^1 f(x)dx=\frac{1}{n}\sum_{k=1}^n f(a_k) \).
***
***
- Tue Apr 13, 2010 7:50 pm
- Forum: Analiza matematica
- Topic: Shortlist ONM 2010 pb 23
- Replies: 4
- Views: 426
Shortlist ONM 2010 pb 23
Fie \( f:[0,1]\rightarrow\mathbb{R} \) integrabila,derivabila in 1 si \( f(1)=0 \).Aratati ca \( \lim_{n\to\infty} n^2\int_0^1 x^nf(x)dx=-f^{\prime}(1) \)
Dan Stefan Marinescu,Viorel Cornea
Dan Stefan Marinescu,Viorel Cornea
- Tue Mar 30, 2010 9:51 am
- Forum: Algebra
- Topic: Numar de subgrupuri
- Replies: 1
- Views: 155
Cerinta este echivalenta cu gasirea a doua siruri de grupuri (G_n)_{n\ge1},(H_n)_{n\ge1} a.i. \lim_{n\to\infty} \frac{|G_n|}{s(G_n)}=0 si \lim_{n\to\infty} \frac{|H_n|}{s(H_n)}=\infty .Pt al2lea caz e simplu pt ca se poate observa ca pt p prim \mathbb{Z}_p are doar doua subgrupuri si notand H_n=\mat...
- Wed Mar 24, 2010 1:41 pm
- Forum: Analiza matematica
- Topic: Exista f:[0,1]->R care are primitive si e surjectiva
- Replies: 2
- Views: 687
- Wed Mar 24, 2010 10:13 am
- Forum: Analiza matematica
- Topic: O problema curioasa si simpatica de medie
- Replies: 3
- Views: 1022
Considerand aceeasi functie g problema iese chiar usor . Deci fie x_0\in(0,1] a.i. f(x_0)=0 si functia g:[0,1]\rightarrow\mathbb{R},g(x)=f(x)-F(x) . Presupun prin absurd ca g(x)>0,\forall x\in(0,1) =>g(x)>0,\forall x\in(0,x_0) . Avem g(x_0)=-F(x_0)\ge0 =>F(x_0)\le 0 . Fie h:[0,x_0]\rightarrow\mathbb...