Shortlist ONM 2010 pb 23

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
Laurentiu Tucaa
Thales
Posts: 145
Joined: Sun Mar 22, 2009 6:22 pm
Location: Pitesti

Shortlist ONM 2010 pb 23

Post by Laurentiu Tucaa »

Fie \( f:[0,1]\rightarrow\mathbb{R} \) integrabila,derivabila in 1 si \( f(1)=0 \).Aratati ca \( \lim_{n\to\infty} n^2\int_0^1 x^nf(x)dx=-f^{\prime}(1) \)


Dan Stefan Marinescu,Viorel Cornea
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Integram prin parti, apoi folosim Propozitia

Daca \( g:[0,1]\longrightarrow\mathbb{R} \) este integrabila si continua in \( x=1 \), atunci \( \lim_{n\to\infty}n\int_0^1x^ng(x)dx=g(1) \)
Theodor Munteanu
Pitagora
Posts: 98
Joined: Tue May 06, 2008 5:46 pm
Location: Sighetu Marmatiei

Post by Theodor Munteanu »

Putem oare integra prin parti?
La inceput a fost numarul. El este stapanul universului.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Nu, evident :wink:
Laurentiu Tucaa
Thales
Posts: 145
Joined: Sun Mar 22, 2009 6:22 pm
Location: Pitesti

Post by Laurentiu Tucaa »

Problemuta e destul de simpla .Primul pas se ia functia \( g:[0,1]\rightarrow\mathbb{R},g(x)=\frac{f(x)-f(1)}{x-1} \) ,care este evident marginita .Mai mult \( n^2\int_0^{1-\frac{1}{\sqrt{n}}}x^ng(x)(x-1)dx\rightarrow 0 \) si ce ramane tinde spre \( -f^{\prime}(1) \)
Post Reply

Return to “Analiza matematica”