Search found 37 matches
- Wed Jun 16, 2010 4:18 pm
- Forum: Combinatorica
- Topic: IMAC 2010 Seniori Ziua 2 Problema 5
- Replies: 0
- Views: 48
IMAC 2010 Seniori Ziua 2 Problema 5
Fie A_1,A_2,...,A_n , ( n\ge3 ), n puncte distincte in plan astfel incat fiecare triunghi A_i A_j A_k cu i,j,k\in {1,2,...,n} , i,j,k distincte doua cate doua, este obtuzunghic. Aratati ca exista un punct A_{n+1} in plan astfel incat fiecare triunghi A_i A_j A_{n+1} cu i\ne j , i,j\in{1,2,...,n} est...
- Wed Jun 16, 2010 4:05 pm
- Forum: Combinatorica
- Topic: IMAC Seniori 15 mai 2010 Ziua 1 Subiectul 1
- Replies: 2
- Views: 81
Re: IMAC Seniori 15 mai 2010 Ziua 1 Subiectul 1
Fie 3n (n\ge 1) puncte in plan, oricare trei necoliniare. Sa se arate ca multimea acestor puncte formeaza varfurile a n perechi de triunghiuri disjuncte. SPANIA Am intrebat acolo si am aflat ca de fapt a fost o greseala de traducere a enuntului, erau de fapt n triunghiuri disjuncte, sau ceva de gen...
- Wed Jun 16, 2010 4:03 pm
- Forum: Geometrie
- Topic: IMAC Seniori Ziua 2 Problema 4
- Replies: 0
- Views: 55
IMAC Seniori Ziua 2 Problema 4
Fie ABCD un patrat si M,N doua puncte care se afla pe doua laturi distincte ale patratului. Presupunem ca MN imparte patratul in doua poligoane circumscriptibile. Notam cu R si r razele cercurilor inscrise in cele doua poligoane si se presupune cunoscut ca R>r. Sa se afle lungimea segmenului MN in f...
- Wed Jun 16, 2010 4:02 pm
- Forum: Inegalitati
- Topic: IMAC 2010 Ziua a doua Problema 6
- Replies: 0
- Views: 46
IMAC 2010 Ziua a doua Problema 6
Fie numerele reale \( a,b,c\in[0,\infty) \) astfel incat \( a+b+c=2 \). Sa se arate ca:
\( \frac{bc}{\sqrt[4]{3a^2+4}}+\frac{ca}{\sqrt[4]{3b^2+4}}+\frac{ab}{\sqrt[4]{3c^2+4}}\le\frac{2*\sqrt[4]{3}}{3} \)
Spania
\( \frac{bc}{\sqrt[4]{3a^2+4}}+\frac{ca}{\sqrt[4]{3b^2+4}}+\frac{ab}{\sqrt[4]{3c^2+4}}\le\frac{2*\sqrt[4]{3}}{3} \)
Spania
- Fri Apr 16, 2010 6:40 pm
- Forum: Clasa a X-a
- Topic: Problema cu radacini de complexe
- Replies: 0
- Views: 176
Problema cu radacini de complexe
Fie a,b,c,d numere complexe astfel incat ad-bc\neq0 si fie n\ge2 un numar natural fixat. Consideram ecuatia: (ax+b)^{n}+(cx+d)^{n}=0 . a)Sa se arata ca daca |a|=|c| , atunci radacinile ecuatiei sunt situate pe o dreapta. b)Sa se arata ca daca |a|\neq|c| , atunci radacinile ecuatiei sunt situate pe u...
- Fri Apr 16, 2010 2:10 pm
- Forum: Clasa a X-a
- Topic: Problema 1, lista scurta 2010
- Replies: 6
- Views: 679
Aplicam teorema cosinusului si merge :D postez o demonstratie completa cand o sa gasesc una mai interesanta :twisted: E destul de complicata :P. Daca facem calculele ne da: 2-a\overline{b}-\overline{a}b-a\overline{c}-\overline{a}c+b\overline{c}+\overline{b}c\ge-1 , adica a\overline{b}+b\overline{a}...
- Fri Apr 16, 2010 1:47 pm
- Forum: Clasa a X-a
- Topic: Problema 2, lista scurta 2010
- Replies: 1
- Views: 253
Re: Problema 2, lista scurta 2010
Fie a , b , c\in (0,1) si x , y , z\in (0,\infty) astfel incat a=(bc)^x , b=(ca)^y , c=(ab)^z . Sa se arate ca : \sum\ \frac 1{x+y+2}\ \le\ 1 . Cezar si Tudorel Lupu, Constanta Deci, x=\log_{bc}a , y=\log_{ac}b , z=\log_{ab}c . \sum\frac{1}{x+y+2}=\sum\frac{1}{(x+1)+(y+1)}=\sum\frac{1}{\log_{bc}abc...
- Sun Mar 28, 2010 8:48 pm
- Forum: Clasa a X-a
- Topic: Shortlist 20
- Replies: 1
- Views: 149
Shortlist 20
Demonstrati ca daca \( a,b,c\in\mathbb[0,1] \), atunci:
\( \frac{a}{1+bc}+\frac{b}{1+ca}+\frac{c}{1+ab}+abc\le\frac{5}{2} \).
Vasile Pop, Cluj, Shortlist 2007
\( \frac{a}{1+bc}+\frac{b}{1+ca}+\frac{c}{1+ab}+abc\le\frac{5}{2} \).
Vasile Pop, Cluj, Shortlist 2007
- Sun Mar 28, 2010 8:47 pm
- Forum: Clasa a X-a
- Topic: Shortlist 19
- Replies: 0
- Views: 112
Shortlist 19
Demonstrati ca daca o functie \( f:{R}\rightarrow{R} \) are proprietatea:
\( |\sum_{k=1}^n 2^k(f(x+ky)-f(x-ky))|\le1 \), oricare \( n\in\mathbb{N}* \) si oricare \( x,y\in\mathbb{R} \), atunci f este constanta.
Farcas Csaba, Cluj, Shortlist 2007
\( |\sum_{k=1}^n 2^k(f(x+ky)-f(x-ky))|\le1 \), oricare \( n\in\mathbb{N}* \) si oricare \( x,y\in\mathbb{R} \), atunci f este constanta.
Farcas Csaba, Cluj, Shortlist 2007
- Sun Mar 28, 2010 8:42 pm
- Forum: Clasa a X-a
- Topic: Shortlist 7
- Replies: 2
- Views: 153
- Sun Mar 28, 2010 8:40 pm
- Forum: Clasa a X-a
- Topic: Shortlist 18
- Replies: 0
- Views: 102
Shortlist 18
Fie a\in\mathbb{N}, a\ge2 . Definitm sirul (a_n)_{n\ge0} prin relatiile: x_0=\frac{a^2}{4}, x_1=\frac{2a^4-4a^3-a^2+4a}{4} si x_{n+1}-(4a^2-2)x_n+x_{n-1}=0 , pentru n\ge1 . Sa se arate ca numarul 2x_n-\frac{a^2-2}{2} este patrat perfect pentru orice n\in\mathbb{N} . Stefan Alexe, Pitesti, Shortlist ...
- Sun Mar 28, 2010 8:35 pm
- Forum: Clasa a X-a
- Topic: Shortlist 17
- Replies: 2
- Views: 177
Shortlist 17
Fie \( a,b>1 \). Rezolvati ecuatia:
\( a^{bx}+b^{\frac{a}{x}}=a^b+b^a \).
Marin Chirciu, Pitesti, Shortlist 2005
\( a^{bx}+b^{\frac{a}{x}}=a^b+b^a \).
Marin Chirciu, Pitesti, Shortlist 2005
- Sun Mar 28, 2010 8:33 pm
- Forum: Clasa a X-a
- Topic: Shortlist 16
- Replies: 0
- Views: 95
Shortlist 16
Gasiti toate perechile de numere complexe \( (z_1,z_2) \) care satisfac simultan conditiile:
a)\( |1+z_1+z_2|=|1+z_1|=1 \);
b)\( |z_1z_2(z_1+z_2)|=2(|z_1|+|z_2|) \).
Valentin Voricu, Shortlist 2004
a)\( |1+z_1+z_2|=|1+z_1|=1 \);
b)\( |z_1z_2(z_1+z_2)|=2(|z_1|+|z_2|) \).
Valentin Voricu, Shortlist 2004
- Sun Mar 28, 2010 8:31 pm
- Forum: Clasa a X-a
- Topic: Shortlist 15
- Replies: 1
- Views: 141
Shortlist 15
Sa se arate ca ecuatia \( 5^x+6^{\frac{1}{x}}+7^{x+\frac{1}{x}}=58 \) nu admite solutii in multimea numerelor reale.
Mariana Coada, Shortlist 2004
Mariana Coada, Shortlist 2004
- Sun Mar 28, 2010 8:29 pm
- Forum: Clasa a X-a
- Topic: Shortlist 14
- Replies: 1
- Views: 134
Shortlist 14
Demostrati ca pentru orice numere reale x,y, avem:
\( |cosx|+|cosy|+|cos(x+y)|\ge1 \).
Dorin Arventiev, Constanta, Shortlist 2003
\( |cosx|+|cosy|+|cos(x+y)|\ge1 \).
Dorin Arventiev, Constanta, Shortlist 2003
- Sun Mar 28, 2010 8:28 pm
- Forum: Clasa a X-a
- Topic: Shortlist 13
- Replies: 1
- Views: 154
Shortlist 13
Fie \( z_1,z_2,...,z_n, n\ge4 \), numere complexe (nu neaparat diferite), pentru care:
\( |z_1|+|z_2|+...+|z_n|=1 \).Demostrati ca se pot alege unele dintre acestea pentru care modulul sumei este strict mai mare decat \( \frac{1}{4} \).
Valentin Vornicu, Shortlist 2003
\( |z_1|+|z_2|+...+|z_n|=1 \).Demostrati ca se pot alege unele dintre acestea pentru care modulul sumei este strict mai mare decat \( \frac{1}{4} \).
Valentin Vornicu, Shortlist 2003
- Sun Mar 28, 2010 8:25 pm
- Forum: Clasa a X-a
- Topic: Shortlist 12
- Replies: 2
- Views: 264
Shortlist 12
Rezolvati ecuatia:
\( 5^x+5^{x^2}=4^x+6^{x^2} \).
Nicolae Dragomir, Shortlist 2003
\( 5^x+5^{x^2}=4^x+6^{x^2} \).
Nicolae Dragomir, Shortlist 2003