Fie \( a \) , \( b \) , \( c\in (0,1) \) si \( x \) , \( y \) , \( z\in (0,\infty) \) astfel incat \( a=(bc)^x \) , \( b=(ca)^y \) , \( c=(ab)^z \) .
Sa se arate ca : \( \sum\ \frac 1{x+y+2}\ \le\ 1 \) .
Cezar si Tudorel Lupu, Constanta
Problema 2, lista scurta 2010
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
-
Antonache Emanuel
- Euclid
- Posts: 37
- Joined: Sat Feb 28, 2009 4:15 pm
- Location: Targoviste, Dambovita
Re: Problema 2, lista scurta 2010
Deci, \( x=\log_{bc}a \),\( y=\log_{ac}b \),\( z=\log_{ab}c \).Mateescu Constantin wrote:Fie \( a \) , \( b \) , \( c\in (0,1) \) si \( x \) , \( y \) , \( z\in (0,\infty) \) astfel incat \( a=(bc)^x \) , \( b=(ca)^y \) , \( c=(ab)^z \) .
Sa se arate ca : \( \sum\ \frac 1{x+y+2}\ \le\ 1 \) .
Cezar si Tudorel Lupu, Constanta
\( \sum\frac{1}{x+y+2}=\sum\frac{1}{(x+1)+(y+1)}=\sum\frac{1}{\log_{bc}abc+\log_{ac}abc \), si notam \( \log_{ab}abc \) cu\( x_1 \) si analoagele. Ajungem la \( \sum\frac{1}{x_1+x_2}\le\sum\frac{1}{2x_1}=1 \). Inegalitatea iese din \( \frac{4}{a+b}\le\frac{1}{a}+\frac{1}{b} \),oricare a si b numere strict pozitive, aceasta iesind din calcule, si apoi adunand si celelalte doua analoage, iar \( \sum\frac{1}{2x_1}=1 \) iese din calcule. Egalitatea are loc cand \( x_1=x_2=x_3 \), adica \( x=y=z=\frac{1}{2} \)