Problema 2, lista scurta 2010

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Problema 2, lista scurta 2010

Post by Mateescu Constantin »

Fie \( a \) , \( b \) , \( c\in (0,1) \) si \( x \) , \( y \) , \( z\in (0,\infty) \) astfel incat \( a=(bc)^x \) , \( b=(ca)^y \) , \( c=(ab)^z \) .

Sa se arate ca : \( \sum\ \frac 1{x+y+2}\ \le\ 1 \) .

Cezar si Tudorel Lupu, Constanta
Antonache Emanuel
Euclid
Posts: 37
Joined: Sat Feb 28, 2009 4:15 pm
Location: Targoviste, Dambovita

Re: Problema 2, lista scurta 2010

Post by Antonache Emanuel »

Mateescu Constantin wrote:Fie \( a \) , \( b \) , \( c\in (0,1) \) si \( x \) , \( y \) , \( z\in (0,\infty) \) astfel incat \( a=(bc)^x \) , \( b=(ca)^y \) , \( c=(ab)^z \) .

Sa se arate ca : \( \sum\ \frac 1{x+y+2}\ \le\ 1 \) .

Cezar si Tudorel Lupu, Constanta
Deci, \( x=\log_{bc}a \),\( y=\log_{ac}b \),\( z=\log_{ab}c \).
\( \sum\frac{1}{x+y+2}=\sum\frac{1}{(x+1)+(y+1)}=\sum\frac{1}{\log_{bc}abc+\log_{ac}abc \), si notam \( \log_{ab}abc \) cu\( x_1 \) si analoagele. Ajungem la \( \sum\frac{1}{x_1+x_2}\le\sum\frac{1}{2x_1}=1 \). Inegalitatea iese din \( \frac{4}{a+b}\le\frac{1}{a}+\frac{1}{b} \),oricare a si b numere strict pozitive, aceasta iesind din calcule, si apoi adunand si celelalte doua analoage, iar \( \sum\frac{1}{2x_1}=1 \) iese din calcule. Egalitatea are loc cand \( x_1=x_2=x_3 \), adica \( x=y=z=\frac{1}{2} \)
Post Reply

Return to “Clasa a X-a”