IMAC 2010 Seniori Ziua 2 Problema 5

Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata

Post Reply
Antonache Emanuel
Euclid
Posts: 37
Joined: Sat Feb 28, 2009 4:15 pm
Location: Targoviste, Dambovita

IMAC 2010 Seniori Ziua 2 Problema 5

Post by Antonache Emanuel »

Fie \( A_1,A_2,...,A_n \), (\( n\ge3 \)), n puncte distincte in plan astfel incat fiecare triunghi \( A_i \)\( A_j \)\( A_k \) cu \( i,j,k\in
{1,2,...,n} \)
, i,j,k distincte doua cate doua, este obtuzunghic. Aratati ca exista un punct \( A_{n+1} \) in plan astfel incat fiecare triunghi \( A_i \)\( A_j \)\( A_{n+1} \) cu \( i\ne j \), \( i,j\in{1,2,...,n} \) este obtuzunghic.

Serbia
Post Reply

Return to “Combinatorica”