*Estimare indicatorul lui Euler cu o functie de clasa C^1

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

*Estimare indicatorul lui Euler cu o functie de clasa C^1

Post by Cezar Lupu »

Iata o mica teorema pe care am intalnit-o intr-un articol publicat in Comm. Math. Phys. de Florin Boca, Alexandru Zaharescu si Radu Gologan. Ea suna cam asa:

Fie \( f:[a,b]\to\mathbb{R} \) o functie de clasa \( C^{1}([a,b]) \). Sa se arate ca

\( \sum_{a<k\leq b}\frac{\varphi(k)}{k}f(k)=\frac{6}{\pi^{2}}\int_{a}^{b}f(x)dx+O( \log b (||f||_{\infty}+\int_{a}^{b} |f\prime (x) |dx)) \),

unde \( \varphi(n) \) este indicatorul lui Euler.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Post Reply

Return to “Sisteme Dinamice si Teorie Ergodica”