Matrice de ordin 2

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Matrice de ordin 2

Post by Mateescu Constantin »

Sa se determine toate matricele \( A=\left\(\begin{array}{ccc}
a & b \\\\\\\\
c & d\end{array}\right\)\in\mathcal{M}_2(\mathbb{C}) \)
pentru care \( A^n=\left\(\begin{array}{cccc}
a^n & b^n \\\\\\\\
c^n & d^n\end{array}\right\) \)
, \( \forall\ n\in\mathbb{N}^{\ast} \) .
User avatar
DrAGos Calinescu
Thales
Posts: 121
Joined: Sun Dec 07, 2008 10:00 pm
Location: Pitesti

Post by DrAGos Calinescu »

Din egalitatea \( A=A^2 \) obtinem \( bc=0 \), \( b(a+d)=b^2 \), \( c(a+d)=c^2 \)
Daca \( b=0 \), si \( c=0 \) obtinem matricea \( A=\left\(\begin{array}{ccc} a & 0 \\\\\\\\ 0 & b\end{array}\right\) \) cu \( a,b\in\mathbb{C} \) care verifica cerinta(inductie).
Daca \( b=0 \) si \( c\neq 0 \) obtinem \( c=a+d \).
Trecem la egalitatea \( A=A^3 \) unde obtinem \( ad(a+d)=0 \) relatie care ne trimite la matricele
\( A=\left\(\begin{array}{ccc} 0 & 0 \\\\\\\\ a & a\end{array}\right\) \) \( A=\left\(\begin{array}{ccc} a & 0 \\\\\\\\ a & 0\end{array}\right\) \)
Ramane de verificat cazul \( b\neq 0 \) si \( c=0 \) care se trateaza analog si obtinem matricele
\( A=\left\(\begin{array}{ccc} 0 & a \\\\\\\\ 0 & a\end{array}\right\) \) \( A=\left\(\begin{array}{ccc} a & a \\\\\\\\ 0 & 0\end{array}\right\) \)
Post Reply

Return to “Algebra”