Problema 3, lista scurta 2010

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Problema 3, lista scurta 2010

Post by Mateescu Constantin »

Fie \( m \) , \( p\in\mathbb N \) mai mari sau egale cu \( 3 \) . Determinati cel mai mic numar natural \( n \) , astfel incat orice submultime

cu \( n \) elemente a multimii \( \{\ 1\ ,\ 2\ ,\ 3\ ,\ \ldots\ ,\ pm\ \} \) sa contina doua numere a caror suma sa se divida cu \( p \) .

Marin Ionescu si Marian Teler
Alin
Euclid
Posts: 14
Joined: Sat Mar 27, 2010 12:57 pm

Post by Alin »

\( n=m ? \) Asta e solutia?
Post Reply

Return to “Clasa a X-a”