Sa se arate ca pentru orice operator \( x\in B(\mathbb{H}) \) are loc
\( Ker(x^{*})=Ran(x)^{ \perp } \), unde \( x^{*} \) este adjunctul operatorului \( x \).
Pentru orice operator din B(H) avem Ker(x*)=Ran(x)^{_|_}
Moderator: Liviu Paunescu
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Pentru orice operator din B(H) avem Ker(x*)=Ran(x)^{_|_}
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Dragos Fratila
- Newton
- Posts: 313
- Joined: Thu Oct 04, 2007 10:04 pm
Fie \( a\in ker(x^*) \), atunci \( (x^*a, u)=0, \forall u\in H \), de unde\( (a, xu)=0 \), deci \( a\in Ran(x)^{\perp} \).
Reciproc, fie \( a\in Ran(x)^{\perp} \), atunci \( (a, xu)=0, \forall u\in H \), deci\( (x^*a,u)=0 \forall u\in H \) (de unde e gata, sau...) luam \( u=x^*a \) si rezulta \( ||x^*a||=0 \), deci \( a\in Ker(x^*) \).
Reciproc, fie \( a\in Ran(x)^{\perp} \), atunci \( (a, xu)=0, \forall u\in H \), deci\( (x^*a,u)=0 \forall u\in H \) (de unde e gata, sau...) luam \( u=x^*a \) si rezulta \( ||x^*a||=0 \), deci \( a\in Ker(x^*) \).
"Greu la deal cu boii mici..."