Pentru orice operator din B(H) avem Ker(x*)=Ran(x)^{_|_}

Moderator: Liviu Paunescu

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Pentru orice operator din B(H) avem Ker(x*)=Ran(x)^{_|_}

Post by Cezar Lupu »

Sa se arate ca pentru orice operator \( x\in B(\mathbb{H}) \) are loc

\( Ker(x^{*})=Ran(x)^{ \perp } \), unde \( x^{*} \) este adjunctul operatorului \( x \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
Dragos Fratila
Newton
Posts: 313
Joined: Thu Oct 04, 2007 10:04 pm

Post by Dragos Fratila »

Fie \( a\in ker(x^*) \), atunci \( (x^*a, u)=0, \forall u\in H \), de unde\( (a, xu)=0 \), deci \( a\in Ran(x)^{\perp} \).

Reciproc, fie \( a\in Ran(x)^{\perp} \), atunci \( (a, xu)=0, \forall u\in H \), deci\( (x^*a,u)=0 \forall u\in H \) (de unde e gata, sau...) luam \( u=x^*a \) si rezulta \( ||x^*a||=0 \), deci \( a\in Ker(x^*) \).
"Greu la deal cu boii mici..."
Post Reply

Return to “Analiza functionala si teorie spectrala”