Demonstrati inegalitatea:
\( \frac{x}{13x+y+z}+\frac{y}{13y+x+z}+\frac{z}{13z+x+y}\le \frac{1}{5} \).
o inegalitate
Moderators: Bogdan Posa, Laurian Filip
- Andi Brojbeanu
- Bernoulli
- Posts: 294
- Joined: Sun Mar 22, 2009 6:31 pm
- Location: Targoviste (Dambovita)
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
Presupunem, fara a restrange generalitatea ca \( x\ge y\ge z \) . Atunci : \( \left\[\ \begin{array}{cc} \frac{x}{13x+y+z} & \ge & \frac{y}{13y+x+z} & \ge & \frac{z}{13z+x+y} \\\\\\\\\\\
13x+y+z & \ge & 13y+x+z & \ge & 13z+x+y\ \end{array}\right\] \) ,
si aplicam inegalitatea lui Cebasev : \( \sum\ \[\frac{x}{13x+y+z}\cdot(13x+y+z)\]\ \ge\ \frac 13\cdot\sum\ \frac{x}{13x+y+z}\cdot\sum\ (13x+y+z) \) .
\( \Longleftrightarrow\ x+y+z\ \ge\ \frac 13\ \cdot\ \(\sum\ \frac{x}{13x+y+z}\)\ \cdot\ 15(x+y+z)\ \Longleftrightarrow\ \sum\ \frac{x}{13x+y+z}\ \le\ \frac 15 \) .
13x+y+z & \ge & 13y+x+z & \ge & 13z+x+y\ \end{array}\right\] \) ,
si aplicam inegalitatea lui Cebasev : \( \sum\ \[\frac{x}{13x+y+z}\cdot(13x+y+z)\]\ \ge\ \frac 13\cdot\sum\ \frac{x}{13x+y+z}\cdot\sum\ (13x+y+z) \) .
\( \Longleftrightarrow\ x+y+z\ \ge\ \frac 13\ \cdot\ \(\sum\ \frac{x}{13x+y+z}\)\ \cdot\ 15(x+y+z)\ \Longleftrightarrow\ \sum\ \frac{x}{13x+y+z}\ \le\ \frac 15 \) .
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact: