o inegalitate

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

o inegalitate

Post by Andi Brojbeanu »

Demonstrati inegalitatea:
\( \frac{x}{13x+y+z}+\frac{y}{13y+x+z}+\frac{z}{13z+x+y}\le \frac{1}{5} \).
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Post by Mateescu Constantin »

Presupunem, fara a restrange generalitatea ca \( x\ge y\ge z \) . Atunci : \( \left\[\ \begin{array}{cc} \frac{x}{13x+y+z} & \ge & \frac{y}{13y+x+z} & \ge & \frac{z}{13z+x+y} \\\\\\\\\\\
13x+y+z & \ge & 13y+x+z & \ge & 13z+x+y\ \end{array}\right\] \)
,

si aplicam inegalitatea lui Cebasev : \( \sum\ \[\frac{x}{13x+y+z}\cdot(13x+y+z)\]\ \ge\ \frac 13\cdot\sum\ \frac{x}{13x+y+z}\cdot\sum\ (13x+y+z) \) .

\( \Longleftrightarrow\ x+y+z\ \ge\ \frac 13\ \cdot\ \(\sum\ \frac{x}{13x+y+z}\)\ \cdot\ 15(x+y+z)\ \Longleftrightarrow\ \sum\ \frac{x}{13x+y+z}\ \le\ \frac 15 \) .
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

O solutie la nivelul clasei a VIII-a se poate da notand \( a=13x+y+z, \ b=x+13y+z, \ c=x+y+13z \) , iar apoi exprimand \( x, \ y, \ z \) in functie de \( a, \ b, \ c \). :wink:
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Post Reply

Return to “Clasa a VIII-a”