SEEMOUS 2010- problema 4

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

SEEMOUS 2010- problema 4

Post by Radu Titiu »

Fie \( A \) si \( B \) \( \in \mathcal{M}_n(\mathbb{Z}) \) cu \( \det(B) \neq 0 \).Aratati ca exista \( m \in \mathbb{N} \) a.i.

\( AB^{-1} = \sum_{k=1}^n N_k^{-1} \)

unde \( N_k \in \mathcal{M}_n(\mathbb{Z}) \) si \( N_i \neq N_j \) daca \( i\neq j \).

(Obs: \( B^{-1} si N_k^{-1} \) pot avea elemente din \( \mathbb{Q} \))
A mathematician is a machine for turning coffee into theorems.
Post Reply

Return to “Algebra”