OJM 2010

Aici puteti discuta si subiectele non-matematice :)

Moderators: Mihai Berbec, Liviu Paunescu

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

OJM 2010

Post by Claudiu Mindrila »

Bafta celor care participati maine la OJM! :)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
cipriancx
Euclid
Posts: 22
Joined: Sun Nov 16, 2008 8:23 pm

Post by cipriancx »

sa fie...
User avatar
salazar
Pitagora
Posts: 91
Joined: Mon Apr 06, 2009 7:36 am
Location: Alba Iulia

Post by salazar »

Bafta tuturor!
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

Succes!
. A snake that slithers on the ground can only dream of flying through the air.
Laurentiu Tucaa
Thales
Posts: 145
Joined: Sun Mar 22, 2009 6:22 pm
Location: Pitesti

Post by Laurentiu Tucaa »

Bafta tuturor !!!Sa mergem toti mateforumistii la Iasi!
User avatar
DrAGos Calinescu
Thales
Posts: 121
Joined: Sun Dec 07, 2008 10:00 pm
Location: Pitesti

Post by DrAGos Calinescu »

Ne auzim la Iasi :)
Mergem toti la un suc!!
Adriana Nistor
Pitagora
Posts: 82
Joined: Thu Aug 07, 2008 10:07 pm
Location: Drobeta Turnu Severin, Mehedinti

Post by Adriana Nistor »

Mult succes tuturor! :P
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Cine-s forumistii calificati in finala ? Felicitari tuturor participantilor ! Problema de la clasa a X - a (cea cu numere complexe)

imi apartine si a fost postata aici (<== click) la 29 iunie 2005 pe http://www.mathlinks.ro .
User avatar
DrAGos Calinescu
Thales
Posts: 121
Joined: Sun Dec 07, 2008 10:00 pm
Location: Pitesti

Post by DrAGos Calinescu »

Domn profesor Nicula ce spuneti de rezolvarea mea la punctul b).
Presupunem \( a_1>2 \) si vom demonstra ca \( a_2>a_1 \)
Daca \( a_2\le a_1 \) atunci \( a_1^2=|z^2+\frac{1}{z_1^2}+2|\le a_2+2\le a_1+2 \) Adica \( (a_1-2)(a_1+1)\le 0 \) contradictie!!!
Acum deoarece \( a_1>2 \) aplicam punctul 1 al problemei pana la un \( k \) oarecare.
Prin insumare obtinem \( a_2-a_1<a_{k+1}-a_k \forall k\in\mathbb{N}, k\ge 2 \) Deci sirul este strict crescator si obtinem o contradictie la presupunerea initiala.
baleanuAR
Euclid
Posts: 28
Joined: Sun Mar 01, 2009 7:47 pm
Location: Motru, Gorj

Post by baleanuAR »

Pe aceeasi solutie un prieten a luat 7 puncte. :D
:)
traian alexandresscu
Posts: 3
Joined: Thu Mar 04, 2010 10:42 pm

Post by traian alexandresscu »

Subiectele de la clasa a X-a au fost cam urate :shock: ,mai putin cel al Domnului Nicula :D
Post Reply

Return to “Chat de voie”