Maximul unei expresii

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
DrAGos Calinescu
Thales
Posts: 121
Joined: Sun Dec 07, 2008 10:00 pm
Location: Pitesti

Maximul unei expresii

Post by DrAGos Calinescu »

Daca \( a_1,a_2\in\mathbb{R} \) astfel incat \( a_1^2+a_2^2=1 \), sa se demonstreze ca maximul expresiei \( a_1a_2+\frac{1}{2}\cdot a_2^2 \) este \( \cos\frac{\pi}{5} \). Pentru ce valori ale numerelor \( a_1,a_2 \) se realizeaza acest maxim?
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

\( a_1=\sin x \) , \( a_2=\cos x \)

atunci \( a_1a_2+\frac{1}{2}a_2^2=\frac{2\sin 2x+\cos 2x+1}{4}\le\frac{\sqrt{5}+1}{4}=\cos\frac{\pi}{5} \)
Post Reply

Return to “Clasa a X-a”