Sa se calculeze limita
\( \ {\lim (}\limits_{x \to 1} \frac{m}{{1 - x^m }} - \frac{n}{{1 - x^n }})
\ \),
unde m, n apartin numerelor naturale nenule si m diferit de n.
O limita
\( L=\lim_{x\to1}( \frac{m}{1-x^m}-\frac{n}{1-x^n}) \)
Atunci din L'Hopital:
\( L=\lim_{x\to1}\frac{nx^m-mx^n+m-n}{x^{m+n}-x^m-x^n+1}=\lim_{x\to1}\frac{mnx^{m-1}-mnx^{n-1}}{(m+n)x^{m+n-1}-mx^{m-1}-nx^{n-1}}=
\\=\lim_{x\to1}\frac{mnx^{m-n}-mn}{(m+n)x^{m+n-n}-mx^{m-n}-n}=\lim_{x\to1}\frac{mn(m-n)x^{m-n-1}}{(m+n)(n+m-n)x^{n+m-n-1}-m(m-n)x^{m-n-1}}=\frac{mn(m-n)}{(m+n)m-m(m-n)}=\frac{m-n}{2}. \)
Atunci din L'Hopital:
\( L=\lim_{x\to1}\frac{nx^m-mx^n+m-n}{x^{m+n}-x^m-x^n+1}=\lim_{x\to1}\frac{mnx^{m-1}-mnx^{n-1}}{(m+n)x^{m+n-1}-mx^{m-1}-nx^{n-1}}=
\\=\lim_{x\to1}\frac{mnx^{m-n}-mn}{(m+n)x^{m+n-n}-mx^{m-n}-n}=\lim_{x\to1}\frac{mn(m-n)x^{m-n-1}}{(m+n)(n+m-n)x^{n+m-n-1}-m(m-n)x^{m-n-1}}=\frac{mn(m-n)}{(m+n)m-m(m-n)}=\frac{m-n}{2}. \)
Last edited by mihai++ on Wed Dec 23, 2009 2:25 pm, edited 1 time in total.
n-ar fi rau sa fie bine 