phi(sigma(n)) nu este rationala

Moderator: Filip Chindea

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

phi(sigma(n)) nu este rationala

Post by Cezar Lupu »

Sa se arate ca nu exista polinoame \( P, Q\in\mathbb{R}[X] \) astfel incat

\( \phi(\sigma(n))=\frac{P(n)}{Q(n)}, \forall n\in\mathbb{N}, \)

unde \( \phi(n) \) este indicatorul lui Euler, iar \( \sigma(n) \) este functia suma-divizor.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Post Reply

Return to “Teoria analitica a numerelor”