Functii olomorfe injective

Moderators: Mihai Berbec, Liviu Paunescu

Post Reply
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Functii olomorfe injective

Post by Beniamin Bogosel »

Fie \( D \) un deschis din \( \mathbb{C} \).
a) Daca \( f: D \to \mathbb{C} \) este olomorfa si injectiva atunci \( f^\prime(z) \neq 0, \ \forall z \in D \).
b) Daca \( z_0 \) este un punct din \( D \) si \( f: D\setminus \{z_0\}\to \mathbb{C} \) este olomorfa si injectiva atunci \( z_0 \) nu este singularitate esentiala pentru \( f \).
c) Daca \( f : \mathbb{C} \to \mathbb{C} \) este olomorfa si injectiva atunci \( f \) este liniara.

Admitere SNSB 2009
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Post Reply

Return to “Analiza complexa”