Fie \( f:[0,\infty) \to [0,\infty) \), cu proprietatea:
\( |f(x+y)-f(x)| \leq \ln\left( \frac{1+x+y}{1+x}\right),\forall x,y \in [0,\infty) \).
a) Determinati \( m\in \mathbb{N}^* \) astfel incat multimea valorilor lui \( f \) sa aiba exact \( m \) elemente.
b) Sa se arate ca urmatorul sir recurent:
\( x_{n+1}=\frac{x_n+f(x_n)}{2} \), \( n\geq 0 \),
are limita pentru orice \( x_0 \geq 0 \).
V. Radu
Traian Lalescu 2009, problema 4
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
a)\( |f(x)-f(y)|\leq |x-y| \).
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog