Traian Lalescu 2009, problema 4

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Traian Lalescu 2009, problema 4

Post by Laurian Filip »

Fie \( f:[0,\infty) \to [0,\infty) \), cu proprietatea:
\( |f(x+y)-f(x)| \leq \ln\left( \frac{1+x+y}{1+x}\right),\forall x,y \in [0,\infty) \).

a) Determinati \( m\in \mathbb{N}^* \) astfel incat multimea valorilor lui \( f \) sa aiba exact \( m \) elemente.
b) Sa se arate ca urmatorul sir recurent:

\( x_{n+1}=\frac{x_n+f(x_n)}{2} \), \( n\geq 0 \),

are limita pentru orice \( x_0 \geq 0 \).

V. Radu
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

a)\( |f(x)-f(y)|\leq |x-y| \).
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Post Reply

Return to “Analiza matematica”