Una dintre problemele mele preferate de statistica si probabilitati.
Notam cu \( V_{n} \) esantionul de dispersie al logaritmilor primelor \( n \) numere naturale. Sa se calculeze \( \lim_{n\to\infty}V_{n} \).
American Mathematical Monthly, 1998
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Totusi, hai sa spargem gheata si pe aceasta parte a forumului Poate asa o sa mai vina lume si pe aici
Solutie.
Vom folosi binecunoscuta formula a dispersiei (variantei), anume:
\( V(X)=M(X^{2})-(M(X))^{2} \).
In cazul nostru avem de calculat varianta logaritmilor primelor \( n \) numere naturale, adica
\( V_{n}=\frac{1}{n}\sum_{k=1}^{n}ln^{2}k-\left(\frac{1}{n}\sum_{k=1}^{n}ln k\right)^{2} \).
Acum, folosind smecheria \( \ln k=ln\frac{k}{n}+ ln n \), vom obtine \( V_{n}=\frac{1}{n}\sum_{k=1}^{n}\left( ln\frac{k}{n}+ln n\right)^{2}-\left(\frac{1}{n}\sum_{k=1}^{n}\left( ln\frac{k}{n}+ln n\right)\right)^{2} \).
Mai departe, avem ca \( V_{n}=\frac{1}{n}\sum_{k=1}^{n-1}\left(ln\frac{k}{n}\right)^{2}-\left(\frac{1}{n}\sum_{k=1}^{n-1}ln\frac{k}{n}\right)^{2} \).
In virtutea, acestui topic, rezulta ca
\( \lim_{n\to\infty}V_{n}=\int_0^1ln^{2}xdx-\left(\int_0^1ln x dx\right)^{2}=1 \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.