Puteri

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Puteri

Post by alex2008 »

Sa se arate ca \( 6^{90}>5^{94} \) si ca \( 7^{85}>6^{90} \) .
. A snake that slithers on the ground can only dream of flying through the air.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Vom folosi relatiile \( \underline{\overline{\left\|\ 2^{10}\ >\ 2^3\cdot 5^3\ \ \wedge\ \ 3^4\ >\ 2^4\cdot 5\ \right\|}}\ . \)

\( 6^{90}=2^{90}\cdot 3^{90}=2^{90}\cdot\left(3^4\right)^{22}\cdot 3^2\ >\ 2^{90}\cdot\left(2^4\cdot5\right)^{22}\cdot 3^2=2^{178}\cdot 9\cdot 5^{22}=\left(2^{10}\right)^{17}\cdot 2^8\cdot 9\cdot 5^{22\ >\ \)

\( \left(2^3\cdot 5^3\right)^{17}\cdot 2^8\cdot 9\cdot 5^{22}=2^{59}\cdot 9\cdot 5^{73}=\left(2^{10}\right)^5\cdot 2^9\cdot 9\cdot 5^{73}\ >\ \left(2^3\cdot 5^3\right)^5\cdot 2^9\cdot 9\cdot 5^{73}=2^{24}\cdot 9\cdot 5^{88}= \)

\( \left(2^{10}\right)^2\cdot 2^4\cdot 9\cdot 5^{88}\ >\ \left(2^3\cdot 5^3\right)^2\cdot 2^4\cdot 9\cdot 5^{88}=2^{10}\cdot 9\cdot 5^{94}\ >\ 2^3\cdot 5^3\cdot 9\cdot 5^{94}=2^3\cdot 9\cdot 5^{97}=72\cdot 5^{97}\ >\ 5^{99}\ . \)

In concluzie, ceva mai tare, \( \overline {\underline{\left\|\ 6^{90}\ \>\ 5^{99}\ \right\|}}\ . \) Insa o simpla logaritmare si "frunzarirea"

tabelelor de logaritmi
sau un calculator stiintific rezolva "sub un minut" problema ... Trebuie sa fi cel putin

"nebun" (ca mine, poate !) sa faci astfel o asemenea problema. Poate la clasele mai mici era mai instructiva.
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

Probabil ca ar fi fost o problema instructiva la clasele mai mici , dar eu le-am vazut ca niste aplicatii la inegalitatea lui Bernoulli . Poate ar fi trebuit sa specific sa se rezolve doar prin Bernoulli .
. A snake that slithers on the ground can only dream of flying through the air.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Poti arata aici cum folosesti inegalitatea lui Bernoulli \( (1+x)^n\ge 1+nx \) ...
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

Pai prima :

\( 6^{90}>5^{94}\Leftrightarrow 6^{45}>5^{47}\Leftrightarrow (\frac{6}{5})^{45}>5^2 \)

Dar \( (\frac{6}{5})^5=(1+\frac{1}{5})^5>1+5\cdot \frac{1}{5}=2 \Rightarrow (\frac{6}{5})^{45}>2^9>25 \)
. A snake that slithers on the ground can only dream of flying through the air.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Frumos, Alex2008 ! Iti recomand sa reiei multele tale probleme propuse fara nici o interventie
si poate le dai cate o indicatie la fiecare. Sper ca astfel sa incurajam elevii sa le abordeze.
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

Ok , o sa tin cont de recomandarea dumneavoastra , domnule Nicula .
. A snake that slithers on the ground can only dream of flying through the air.
Post Reply

Return to “Clasa a 9-a”