Puteri
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Vom folosi relatiile \( \underline{\overline{\left\|\ 2^{10}\ >\ 2^3\cdot 5^3\ \ \wedge\ \ 3^4\ >\ 2^4\cdot 5\ \right\|}}\ . \)
\( 6^{90}=2^{90}\cdot 3^{90}=2^{90}\cdot\left(3^4\right)^{22}\cdot 3^2\ >\ 2^{90}\cdot\left(2^4\cdot5\right)^{22}\cdot 3^2=2^{178}\cdot 9\cdot 5^{22}=\left(2^{10}\right)^{17}\cdot 2^8\cdot 9\cdot 5^{22\ >\ \)
\( \left(2^3\cdot 5^3\right)^{17}\cdot 2^8\cdot 9\cdot 5^{22}=2^{59}\cdot 9\cdot 5^{73}=\left(2^{10}\right)^5\cdot 2^9\cdot 9\cdot 5^{73}\ >\ \left(2^3\cdot 5^3\right)^5\cdot 2^9\cdot 9\cdot 5^{73}=2^{24}\cdot 9\cdot 5^{88}= \)
\( \left(2^{10}\right)^2\cdot 2^4\cdot 9\cdot 5^{88}\ >\ \left(2^3\cdot 5^3\right)^2\cdot 2^4\cdot 9\cdot 5^{88}=2^{10}\cdot 9\cdot 5^{94}\ >\ 2^3\cdot 5^3\cdot 9\cdot 5^{94}=2^3\cdot 9\cdot 5^{97}=72\cdot 5^{97}\ >\ 5^{99}\ . \)
In concluzie, ceva mai tare, \( \overline {\underline{\left\|\ 6^{90}\ \>\ 5^{99}\ \right\|}}\ . \) Insa o simpla logaritmare si "frunzarirea"
tabelelor de logaritmi sau un calculator stiintific rezolva "sub un minut" problema ... Trebuie sa fi cel putin
"nebun" (ca mine, poate !) sa faci astfel o asemenea problema. Poate la clasele mai mici era mai instructiva.
\( 6^{90}=2^{90}\cdot 3^{90}=2^{90}\cdot\left(3^4\right)^{22}\cdot 3^2\ >\ 2^{90}\cdot\left(2^4\cdot5\right)^{22}\cdot 3^2=2^{178}\cdot 9\cdot 5^{22}=\left(2^{10}\right)^{17}\cdot 2^8\cdot 9\cdot 5^{22\ >\ \)
\( \left(2^3\cdot 5^3\right)^{17}\cdot 2^8\cdot 9\cdot 5^{22}=2^{59}\cdot 9\cdot 5^{73}=\left(2^{10}\right)^5\cdot 2^9\cdot 9\cdot 5^{73}\ >\ \left(2^3\cdot 5^3\right)^5\cdot 2^9\cdot 9\cdot 5^{73}=2^{24}\cdot 9\cdot 5^{88}= \)
\( \left(2^{10}\right)^2\cdot 2^4\cdot 9\cdot 5^{88}\ >\ \left(2^3\cdot 5^3\right)^2\cdot 2^4\cdot 9\cdot 5^{88}=2^{10}\cdot 9\cdot 5^{94}\ >\ 2^3\cdot 5^3\cdot 9\cdot 5^{94}=2^3\cdot 9\cdot 5^{97}=72\cdot 5^{97}\ >\ 5^{99}\ . \)
In concluzie, ceva mai tare, \( \overline {\underline{\left\|\ 6^{90}\ \>\ 5^{99}\ \right\|}}\ . \) Insa o simpla logaritmare si "frunzarirea"
tabelelor de logaritmi sau un calculator stiintific rezolva "sub un minut" problema ... Trebuie sa fi cel putin
"nebun" (ca mine, poate !) sa faci astfel o asemenea problema. Poate la clasele mai mici era mai instructiva.
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm