Seria sum_{n\geq 1} 1\p_{n} este divergenta

Moderator: Filip Chindea

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Seria sum_{n\geq 1} 1\p_{n} este divergenta

Post by Cezar Lupu »

Sa se arate ca daca \( p_{n} \) este al n-lea termen din sirul numerelor prime, atunci seria \( \sum_{n\geq 1}\frac{1}{p_{n}} \) este divergenta.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Post by Filip Chindea »

O varianta ceva mai dificila (dar si mai explicita):
Aratati ca are loc inegalitatea \( \mathrm{ln}(\mathrm{ln}(x)) - 1 < F(x) \le \mathrm{ln}(\mathrm{ln}(x)) + \mathcal{O} (\mathrm{ln}(\mathrm{ln}(\mathrm{ln}(x)))) \), unde
\( F(x) = \sum_{p \le x, p prim} p^{-1} \).
Last edited by Filip Chindea on Tue Apr 01, 2008 8:58 pm, edited 1 time in total.
Life is complex: it has real and imaginary components.
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Post by Filip Chindea »

Solutie. Notam \( S(k) = \sum_{j=1}^k \frac{1}{p_j} \).
Din \( e^x > 1 + x \), avem

\( \begin{array}{rcl} e^{S(k)} & > & \prod_{j=1}^k \left( 1 + \frac{1}{p_j} \right) \\ & = & 2 \prod_{j=2}^k \frac{p_j + 1}{p_j} \\ & > & 2 \prod_{j=1}^{k-1} \frac{p_j}{p_j - 1} \\ & = & 2 \prod_{j=1}^{k - 1} \left( 1 + \frac{1}{p_j} + \frac{1}{p_j^2} + \cdots \right) \\ & > & 2H_{p_{k-1}} . \end{array} \)

Din aceasta minorare se obtine usor divergenta.

PS. Evident ca nu merita evidentiata aceasta metoda în demonstrarea infinitatii numarului de numere prime.
Life is complex: it has real and imaginary components.
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Post by Cezar Lupu »

O alta solutie, un pic mai directa, zic eu, ar fi urmatoarea:

Daca \( \pi(x) \) reprezinta functia care numara numerle prime mai mici ca \( x \), atunci este cunoscuta teorema numerelor prime, i.e.

\( \pi(x)\simeq\frac{x}{\log x} \) de unde va rezulta ca daca \( p_{n} \) reprezinta al \( n- \)lea numar prim, atucni vom avea estimarea \( p_{n}\simeq n\log n \), de unde, folosind criteriul comparatiei va rezulta ca

\( \sum_{n\geq 1}\frac{1}{p_{n}}\simeq\sum_{n\geq 2}\frac{1}{n\log n} \),

dar ultima serie se stie ca este divergenta (se poate folosi criteriul condensarii al lui Cauchy pentru a arata acest lucru).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Post Reply

Return to “Teoria analitica a numerelor”