Medii

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Medii

Post by Claudiu Mindrila »

Sa se arate ca daca \( a,b\in (0, \infty) \), atunci
\( \frac{8a^2b^2}{(a^2+1)(b^2+1)}\leq \sqrt{(a^4+1)(b^4+1)} \).
Nistor Budescu, R.M.T. 4/2008
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

\( \frac{8a^2b^2}{(a^2+1)(b^2+1)}\leq \frac{8a^2b^2}{4ab}=2ab=\sqrt{4a^2b^2}\leq \sqrt{(a^4+1)(b^4+1)} \)
Post Reply

Return to “Clasa a 8-a”