Suma clasica, mai putin analitica (Gica & Panaitopol)

Moderator: Filip Chindea

Post Reply
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Suma clasica, mai putin analitica (Gica & Panaitopol)

Post by Filip Chindea »

Demonstrati identitatea \( \sum_{n \ge 1} \frac{|\mu(n)|}{\varphi(n)\sigma(n)} = \frac{\pi^2}{6} \), unde notatiile sunt cele cunoscute.
Last edited by Filip Chindea on Mon Jun 23, 2008 8:34 pm, edited 1 time in total.
Life is complex: it has real and imaginary components.
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Post by Cezar Lupu »

Misto problema si nu e chiar asa de usoara cum pare ea la prima vedere. Hai mai intai sa explicam si notatiile ca poate mai viziteaza si altii partea asta a forumlui si
n-as vrea sa limitam discutiile intre noi doi. Pai, putine preliminarii n-ar strica: functiile care apar in enuntul problemei. Mai intai de toate sa spunem ca toate aceste functii se numesc functii aritmetice, adica functiile:
\( \sigma(n)=\sum_{d/n}d \) care reprezinta functia "sum-divisor", functia lui Mobius, \( \mu(n) \) si indicatorul lui Euler, \( \phi(n) \). De retinut
este faptul ca toate aceste trei functii si multe altele sunt functii multiplicative, adica o functie aritmetica \( f\neq 0 \), care pentru orice \( m,n \) naturale cu \( (m,n)=1 \) avem \( f(m\cdot n)=f(m)\cdot f(n) \). Daca \( f \) este multiplicativa atunci \( f(1)=1 \). Cele tre functii de mai sus
sunt aritmetice. Acum, sa incepem prin a spune ca daca \( f:\mathbb{N}^{*}\to\mathbb{C} \) este total multiplicativa astfel incat seria \( \sum_{n\geq 1}f(n) \) este absolut convergenta, atunci

\( \sum_{n\geq 1}f(n)\cdot\prod_{p, prim}(1-f(p))=1 \).

O aplicatie imediata la ce am zis mai sus este \( \sum_{n\geq 1}| \mu(n)|f(n)=\prod_{p, prim}(1+f(p)) \).

Sa consideram functia
\( f(n)=\frac{1}{\sigma(n)\phi(n)} \). Avem \( \phi(n)\geq\sqrt{n} \) pentru \( n \) de la \( 7 \) incolo. Cum, \( \sigma(n)>n \) vom avea ca \( f(n)\leq\frac{1}{n^{3/2}} \). Prin urmare, seria \( \sum_{n=1}^{\infty}f(n) \) este convergenta. Cum \( f \) este si multiplicativa avem, dupa cum am zis mai sus,
\( \sum_{n=1}^{\infty} | \mu(n)|f(n)=\prod_{p, prim}(1-f(p))=1 \).
Astfel, avem ca

\( \sum_{n=1}^{\infty}\frac{| \mu(n)|}{\sigma(n)\cdot\phi(n)}=\prod_{p, prim}\left(1+\frac{1}{(p-1)(p+1)}\right)=\prod_{p, prim}\frac{1}{\left(1-\frac{1}{p^2}\right)}=\frac{\pi^2}{6}. \) Q.E.D
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Post by Filip Chindea »

Demonstratia asta am gasit-o si la solutii in cartea mentionata in titlu... totusi eu am apucat o scurtatura si am zis asa:
Daca \( n \) nu este liber de patrate, evident termenul corespunzator in suma este zero. In caz contrar, fie \( n=p_1...p_r \), \( p_1 < ... < p_r \) prime, iar
\( \varphi(n) = n \prod \left( 1 - \frac{1}{p_k} \right) = \prod (p_k - 1) \),
\( \sigma(n) = \prod \frac{p_k^2-1}{p_k-1} = \prod (p_k + 1) \),
ceea ce implica
\( \frac{|\mu(n)|}{\varphi(n)\sigma(n)} = \frac{1}{\left( \prod(p_k - 1) \right) \cdot \left( \prod (p_k + 1) \right)} \) \( = \frac{1}{\prod(p_k^2 - 1) \).
Aplicand si identitatea
\( \sum_{n \ge 1} \frac{\mu(n)}{n^s} = \frac{1}{\zeta(s)} \), \( s > 1 \)
pentru \( s=2 \), suma de evaluat e
\( \sum_{p_1 < ... < p_m} \frac{1}{\prod(p_k^2-1)} = \prod_{p prim} \left( 1 + \frac{1}{p^2-1} \right) \) \( = \left( \prod_{p prim} \left( 1 - \frac{1}{p^2} \right) \right)^{-1} = \left( \sum_{n=1}^{\infty} \frac{\mu(n)}{n^2} \right)^{-1} \) \( = \left( \frac{1}{\zeta(2)} \right)^{-1} = \frac{\pi^2}{6} \),
ceea ce incheie demonstratia.
Last edited by Filip Chindea on Tue Apr 01, 2008 9:11 pm, edited 1 time in total.
Life is complex: it has real and imaginary components.
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Post by Cezar Lupu »

Pana la urma, tot cam acelasi lucru este. ;)
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Post Reply

Return to “Teoria analitica a numerelor”