Lema 1 Wirsing

Moderators: Mihai Berbec, Liviu Paunescu

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Lema 1 Wirsing

Post by Cezar Lupu »

Fiind dat \( \epsilon>0 \), sa se arate ca exista o functie continua \( \sigma \) astfel incat

\( \xi\sigma(\xi)=\int_0^{\xi}\sigma(\xi-\eta)d\sigma(\eta)+O(\log\xi), \xi\geq 2 \),

iar daca \( \sigma^{\prime} \) este derivata lui \( \sigma \), atunci

\( |\sigma^{\prime}(\xi)|\leq 1+\epsilon, \)

pentru \( \xi>0 \), execeptand o multime numarabila de puncte \( \xi=\xi_{n} \), \( n=1,2, \ldots, n \).
Post Reply

Return to “Analiza reala”