Determinati functiile \( f:R\rightarrow R \) care satisfac relatia:
\( f(xy) \leq xf(y) \), pentru orice \( x,y \in R \).
Problema 1, Vranceanu-Procopiu 2008
Inecuatie functionala
Moderators: Filip Chindea, maky, Cosmin Pohoata
-
Adriana Nistor
- Pitagora
- Posts: 82
- Joined: Thu Aug 07, 2008 10:07 pm
- Location: Drobeta Turnu Severin, Mehedinti
Pentru \( x=0 \) obtinem \( f(0)\leq0 \).
Pentru \( y=1 \) avem \( f(x)\leq xf(1) \). (1)
Pentru \( y=\frac{1}{x} \) se obtine \( f(1)\leq xf(\frac{1}{x}) \). (2)
Folosind relatiile \( (1) \) si \( (2) \) se obtine inegalitatea:
\( f(1)\leq xf(\frac{1}{x})\leq x\frac{1}{x} f(1) \), deci \( f(1)\leq xf(\frac{1}{x})\leq f(1) \), adica \( xf(\frac{1}{x})=f(1) \), de unde \( f(\frac{1}{x})=\frac{1}{x}f(1) \) si prin substitutia \( \frac{1}{x}\to x \) vom avea \( f(x)=xf(1) \).
Pentru \( y=1 \) avem \( f(x)\leq xf(1) \). (1)
Pentru \( y=\frac{1}{x} \) se obtine \( f(1)\leq xf(\frac{1}{x}) \). (2)
Folosind relatiile \( (1) \) si \( (2) \) se obtine inegalitatea:
\( f(1)\leq xf(\frac{1}{x})\leq x\frac{1}{x} f(1) \), deci \( f(1)\leq xf(\frac{1}{x})\leq f(1) \), adica \( xf(\frac{1}{x})=f(1) \), de unde \( f(\frac{1}{x})=\frac{1}{x}f(1) \) si prin substitutia \( \frac{1}{x}\to x \) vom avea \( f(x)=xf(1) \).