O inegalitate tot de clasa a cincea

Moderators: Bogdan Posa, Laurian Filip

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

O inegalitate tot de clasa a cincea

Post by alex2008 »

Demonstrati ca \( \frac{a+2^{180}}{a+3^{120}}<\frac{b+5^{900}}{b+7^{720}} \), oricare ar fi a si b numere naturale.
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

Post by Andi Brojbeanu »

\( 2^{180}=(2^3)^{60}=9^{60}; 3^{120}=(3^2)^{60}=8^{60};
5^{900}=(5^5)^{180}=3125^{180}; 7^{720}=(7^4)^{180}=2401^{180} \)
.
Inmultind mezii cu extremii, obtinem \( a\cdot b+a\cdot 2401^{180}+8^{60}\cdot b+8^{60}\cdot 2401^{180}<a\cdot b+a\cdot 3125^{180}+9^{60}\cdot b+9^{60}\cdot 3125^{180} \)
sau \( 0<a(3125^{180}-2401^{180})+b(9^{60}-8^{60})+9^{60}\cdot 3125^{180}-8^{60}\cdot 2401^{180}(1) \).
Dar, \( 3125^{180}>2401^{180}\Rightarrow a(3125^{180}-2401^{180})\geq 0(2) \) si \( 9^{60}>8^{60}\Rightarrow b(9^{60}-8^{60})\geq 0(3) \).
De asemenea, inmultind cele doua relatii, obtinem \( 9^{60}\cdot 3125^{180}>8^{60}\cdot 2401^{180}\Rightarrow 9^{60}\cdot 3125^{180}-8^{60}\cdot 2401^{180}>0(4) \).
Adunand relatiile \( (2), (3) si (4) \) obtinem relatia \( (1) \), care este adevarata, ceea ce trebuia demonstrat.
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

Prima fractie e subunitara, iar a doua e supraunitara. Cred ca e mai simplu de rezolvat asa. :D
Post Reply

Return to “Clasa a V-a”