O proprietate a unui spatiu masurabil

Moderators: Mihai Berbec, Liviu Paunescu

Post Reply
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

O proprietate a unui spatiu masurabil

Post by Beniamin Bogosel »

Fie \( (X,\mathcal{A}) \) un spatiu masurabil. Demonstrati ca \( card \mathcal{A}\neq \aleph_0 \).

[edit: am schimbat... :) ]
Last edited by Beniamin Bogosel on Sat Nov 01, 2008 9:24 pm, edited 1 time in total.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
User avatar
Liviu Paunescu
Pitagora
Posts: 84
Joined: Wed Sep 26, 2007 6:57 pm

Post by Liviu Paunescu »

:D :D :D Rudinul sa traiasca!!! Nu vreau sa par pedant, dar \( (X,\mathcal{A}) \) se numeste spatiu masurabil. \( (X,\mathcal{A},\mu) \) ar fi un spatiu cu masura. Stiu ca s-ar putea sa va para irelevant, dar eu m-am incurcat de curand in cele doua notiuni si am pierdut ceva timp. Nu mai stiam daca am sau nu masura pe spatiul pe care lucram.
Mesajul Depeche Mode pentru matematicieni:
"You'll see your problems multiplied
If you continually decide
To faithfully pursue
The policy of truth"
Post Reply

Return to “Teoria masurii”