Sa se calculeze suma din \( \frac{1*1!+2*2!+3*3!+...+n!*n}{-1+(n+1)!} \).
Multumesc.
Suma simpla
- Radu Titiu
- Thales
- Posts: 155
- Joined: Fri Sep 28, 2007 5:05 pm
- Location: Mures \Bucuresti
-
Bogdan Cebere
- Thales
- Posts: 145
- Joined: Sun Nov 04, 2007 1:04 pm
Poate e mai clar asa:
\( \sum_{k=1}^{n}\ k! k=\sum_{k=1}^{n}\ k! (k+1-1)=\sum_{k=1}^{n}\ (k+1)!-\sum_{k=1}^{n}\ k!=(2!+3!+4!+ \dots +n!+(n+1)!)-(1!+2!+3!+ \dots +n!)=(n+1)!-1. \).
Se cam suprapune cu topicul acesta.
\( \sum_{k=1}^{n}\ k! k=\sum_{k=1}^{n}\ k! (k+1-1)=\sum_{k=1}^{n}\ (k+1)!-\sum_{k=1}^{n}\ k!=(2!+3!+4!+ \dots +n!+(n+1)!)-(1!+2!+3!+ \dots +n!)=(n+1)!-1. \).
Se cam suprapune cu topicul acesta.