Suma simpla

Post Reply
mihai722
Arhimede
Posts: 8
Joined: Wed Oct 22, 2008 3:20 pm

Suma simpla

Post by mihai722 »

Sa se calculeze suma din \( \frac{1*1!+2*2!+3*3!+...+n!*n}{-1+(n+1)!} \).

Multumesc.
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Post by Radu Titiu »

\( \sum_{k=1}^n k\cdot k! = \sum_{k=1}^n (k+1-1)\cdot k! =\sum_{k=1}^n (k+1)!-k! =(n+1)!-1 \).Deci valoarea raportului este 1.
A mathematician is a machine for turning coffee into theorems.
mihai722
Arhimede
Posts: 8
Joined: Wed Oct 22, 2008 3:20 pm

Post by mihai722 »

thank you, come again.
mihai722
Arhimede
Posts: 8
Joined: Wed Oct 22, 2008 3:20 pm

Post by mihai722 »

Nu e nici o eroare? cum poate \( \sum_{k=1}^n (k+1)!-k! =(n+1)!-1 \) sa fie adevarata? daca pui in loc de \( k \), \( n \) iese \( (n+1)!-n! \) eu nu vad cum poate sa iasa \( (n+1)!-1 \) ?
Bogdan Cebere
Thales
Posts: 145
Joined: Sun Nov 04, 2007 1:04 pm

Post by Bogdan Cebere »

Poate e mai clar asa:
\( \sum_{k=1}^{n}\ k! k=\sum_{k=1}^{n}\ k! (k+1-1)=\sum_{k=1}^{n}\ (k+1)!-\sum_{k=1}^{n}\ k!=(2!+3!+4!+ \dots +n!+(n+1)!)-(1!+2!+3!+ \dots +n!)=(n+1)!-1. \).
Se cam suprapune cu topicul acesta.
Post Reply

Return to “Clasa a 11-a”