Exista o infinitate de indici pentru care p_{n+1}>=2p_k-p

Moderator: Filip Chindea

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Exista o infinitate de indici pentru care p_{n+1}>=2p_k-p

Post by Cezar Lupu »

Sa se arate ca exista o infinitate de indici \( n \) pentru care
\( p_{n+1}\geq 2p_{k}-p_{k-1} \) pentru orice \( k=2,3, \ldots, n \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Post Reply

Return to “Teoria analitica a numerelor”