Produs eulerian de numere prime

Moderator: Filip Chindea

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Produs eulerian de numere prime

Post by Cezar Lupu »

Sa se arate ca daca \( p \) este numar prim atunci \( \prod_{p}\left(1+\frac{1}{p(p+1)}\right)=\frac{\zeta(2)}{\zeta(3)} \), unde \( \zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^{s}} \) repreznta functia zeta a lui Riemann.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
Dragos Fratila
Newton
Posts: 313
Joined: Thu Oct 04, 2007 10:04 pm

Post by Dragos Fratila »

Folosind \( \zeta(s)=\prod_p \left(1-\frac{1}{p^s}\right)=1 \)

Avem de aratat ca:

\( \prod_p\left(1+\frac1{p(p+1)}\right)\prod_p\left(1-\frac{1}{p^2}\right)= \prod_p\left(1-\frac1{p^3}\right)\Leftrightarrow \)

\( \prod_p\left(1-\frac1{p^2}+\frac1{p(p+1)}-\frac1{p^3(p+1)}\right)= \prod_p\left(1-\frac1{p^3}\right) \)

cu un calcul simplu in stanga (aducere la acelasi numitor ...) se termina problema.

... nu stiu daca am voie sa schimb factorii daca nu sunt toti la fel fata de 1. (cred ca nu totusi... ) :roll:
Post Reply

Return to “Teoria analitica a numerelor”