Produs eulerian de numere prime
Moderator: Filip Chindea
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Produs eulerian de numere prime
Sa se arate ca daca \( p \) este numar prim atunci \( \prod_{p}\left(1+\frac{1}{p(p+1)}\right)=\frac{\zeta(2)}{\zeta(3)} \), unde \( \zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^{s}} \) repreznta functia zeta a lui Riemann.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Dragos Fratila
- Newton
- Posts: 313
- Joined: Thu Oct 04, 2007 10:04 pm
Folosind \( \zeta(s)=\prod_p \left(1-\frac{1}{p^s}\right)=1 \)
Avem de aratat ca:
\( \prod_p\left(1+\frac1{p(p+1)}\right)\prod_p\left(1-\frac{1}{p^2}\right)= \prod_p\left(1-\frac1{p^3}\right)\Leftrightarrow \)
\( \prod_p\left(1-\frac1{p^2}+\frac1{p(p+1)}-\frac1{p^3(p+1)}\right)= \prod_p\left(1-\frac1{p^3}\right) \)
cu un calcul simplu in stanga (aducere la acelasi numitor ...) se termina problema.
... nu stiu daca am voie sa schimb factorii daca nu sunt toti la fel fata de 1. (cred ca nu totusi... )
Avem de aratat ca:
\( \prod_p\left(1+\frac1{p(p+1)}\right)\prod_p\left(1-\frac{1}{p^2}\right)= \prod_p\left(1-\frac1{p^3}\right)\Leftrightarrow \)
\( \prod_p\left(1-\frac1{p^2}+\frac1{p(p+1)}-\frac1{p^3(p+1)}\right)= \prod_p\left(1-\frac1{p^3}\right) \)
cu un calcul simplu in stanga (aducere la acelasi numitor ...) se termina problema.
... nu stiu daca am voie sa schimb factorii daca nu sunt toti la fel fata de 1. (cred ca nu totusi... )