\(
\[
{\rm Aratati ca }\sum\limits_{\sigma \in {\rm S}_{\rm n} ,\varepsilon (\sigma ) = - 1}^{} {{\rm |i - }\sigma {\rm (i)|}} = \sum\limits_{\varepsilon (\sigma ) = 1} {|i - \sigma (i)|} ,\forall n \ge 3,n \in N
\]
\)
Niste module amarate
-
Theodor Munteanu
- Pitagora
- Posts: 98
- Joined: Tue May 06, 2008 5:46 pm
- Location: Sighetu Marmatiei
Niste module amarate
La inceput a fost numarul. El este stapanul universului.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Theodor Munteanu
- Pitagora
- Posts: 98
- Joined: Tue May 06, 2008 5:46 pm
- Location: Sighetu Marmatiei
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
\( \sigma(i) \) ia valoarea k de acelasi numar de ori(\( \frac{(n-1)!}{2} \)) atat pentru termenul din stanga cat si pentru termenul din dreapta.Theodor Munteanu wrote:Fara suparare da ce sa inteleg eu din asta?Marius Mainea wrote:|{\( \sigma\in S_n,\epsilon(\sigma)=1,\sigma(i)=k \)}|=|{\( \sigma\in S_n,\epsilon(\sigma)=-1,\sigma(i)=k \)}|=\( \frac{(n-1)!}{2} \)
pentru orice \( k=\overline{1,n} \)