Functii intregi si injective

Moderators: Mihai Berbec, Liviu Paunescu

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Functii intregi si injective

Post by Cezar Lupu »

Aratati ca toate functiile intregi si injective sunt de forma \( f(z)=az+b \) cu \( a, b\in\mathbb{C} \) si \( a\neq 0 \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
aleph
Thales
Posts: 123
Joined: Mon Dec 24, 2007 2:06 am

Post by aleph »

f este polinom (cf. teoremei mari a lui Picard) iar pentru polinoame este simplu.
User avatar
Alin Galatan
Site Admin
Posts: 247
Joined: Tue Sep 25, 2007 9:24 pm
Location: Bucuresti/Timisoara/Moldova Noua

Post by Alin Galatan »

Varianta mai pentru incepatori e sa iei functia \( g(z)=f(\frac{1}{z}) \) si sa studiezi comportamentul in jurul lui 0.
Daca e singularitate esentiala, faci Cassorati, daca e pol, obtii concluzia, iar in ultimul caz ar inseamna ca f are limita la infinit, deci ar fi marginita, deci constanta.
(Hintul e dat in E. Stein, nu mi-a venit mie :))
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Post by Cezar Lupu »

Pai si eu tot de acolo o luasem. :)
Post Reply

Return to “Analiza complexa”