Functii intregi si injective
Moderators: Mihai Berbec, Liviu Paunescu
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Functii intregi si injective
Aratati ca toate functiile intregi si injective sunt de forma \( f(z)=az+b \) cu \( a, b\in\mathbb{C} \) si \( a\neq 0 \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Alin Galatan
- Site Admin
- Posts: 247
- Joined: Tue Sep 25, 2007 9:24 pm
- Location: Bucuresti/Timisoara/Moldova Noua
Varianta mai pentru incepatori e sa iei functia \( g(z)=f(\frac{1}{z}) \) si sa studiezi comportamentul in jurul lui 0.
Daca e singularitate esentiala, faci Cassorati, daca e pol, obtii concluzia, iar in ultimul caz ar inseamna ca f are limita la infinit, deci ar fi marginita, deci constanta.
(Hintul e dat in E. Stein, nu mi-a venit mie
)
Daca e singularitate esentiala, faci Cassorati, daca e pol, obtii concluzia, iar in ultimul caz ar inseamna ca f are limita la infinit, deci ar fi marginita, deci constanta.
(Hintul e dat in E. Stein, nu mi-a venit mie
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact: