Daca \( a,b,c\in(0,\infty) \) cu \( a+b+c=1 \) atunci
\( \frac{a^2+a}{a+bc}+\frac{b^2+b}{b+ca}+\frac{c^2+c}{c+ab}=3 \)
Identitate (own)
Moderators: Bogdan Posa, Laurian Filip
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Re: Identitate- own
MARIUS MAINEA wrote:Daca \( a,b,c\in(0,\infty) \) cu \( a+b+c=1 \) atunci \( \frac{a^2+a}{a+bc}+\frac{b^2+b}{b+ca}+\frac{c^2+c}{c+ab}=3 \)
Draguta ! Se reduce la identitatea evidenta
\( \sum a^2(b+c)=\sum bc(b+c) \) , adica \( \sum \frac {a^2-bc}{(a+b)(a+c)}=0 \) .
Intr-adevar, \( \sum\left(\frac {a^2+a}{a+bc}-1\right)=\sum \frac {a^2-bc}{(a+b)(a+c)}=0\ \) \( \Longrightarrow\ \) \( \sum\frac {a^2+a}{a+bc}=3 \) .
Last edited by Virgil Nicula on Mon Jan 12, 2009 3:10 pm, edited 1 time in total.
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Cu substitutiile \( a=\frac{x}{x+y+z},b=\frac{y}{x+y+z},c=\frac{z}{x+y+z} \) unde \( x,y,z>0 \) avem:\( \sum\frac{a^{2}+a}{a+bc}=\sum\frac{\frac{x^{2}}{\left(x+y+z\right)^{2}}+\frac{x}{x+y+z}}{\frac{yz}{\left(x+y+z\right)^{2}}+\frac{x}{x+y+z}}=\sum\frac{x\left(x+y+x+z\right)}{yz+x\left(x+y+z\right)}=\sum\frac{x\left(x+y\right)+x\left(x+z\right)}{\left(x+y\right)\left(x+z\right)}=\sum\frac{x}{x+y}+\sum\frac{x}{z+x}=3 \), ceea ce trebuia aratat.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste