Sa se arate ca in orice triunghi \( ABC \) este adevarata inegalitatea
\( r\left(\cos\frac{A}{2}+\cos\frac{B}{2}+\cos\frac{C}{2}\right)\leq R\left(\sin\frac{A}{2}+\sin\frac{B}{2}+\sin\frac{C}{2}\right). \)
Inegalitatea 2, trigonometrica, cu sinA/2 si cos A/2
Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Inegalitatea 2, trigonometrica, cu sinA/2 si cos A/2
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- maxim bogdan
- Thales
- Posts: 106
- Joined: Tue Aug 19, 2008 1:56 pm
- Location: Botosani
Se poate demonstra inegalitatea mai tare:
\( \frac{\cos\frac{A}{2}+\cos\frac{B}{2}+\cos\frac{C}{2}}{\sin\frac{A}{2}+\sin\frac{B}{2}+\sin\frac{C}{2}}<2\le \frac{R}{r} \)
Se considera un triunghi \( ABC \) si I centrul cercului inscris acestuia.
Vom folosi inegalitatea \( AI+BI>AB \)
In triunghiul ABI din teorema sinusului avem: \( \frac{BI}{\sin\frac{A}{2}}=\frac{AI}{\sin\frac{B}{2}}=\frac{AB}{\sin(\frac{\pi}{2}+\frac{C}{2})}=\frac{AB}{\cos\frac{C}{2}}=\frac{BI+AI}{\sin\frac{A}{2}+\sin\frac{B}{2}}>\frac{AB}{\sin\frac{A}{2}+\sin\frac{B}{2}} \)
Deci \( \sin\frac{A}{2}+\sin\frac{B}{2}>\cos\frac{C}{2} \).De aici e clar
\( \frac{\cos\frac{A}{2}+\cos\frac{B}{2}+\cos\frac{C}{2}}{\sin\frac{A}{2}+\sin\frac{B}{2}+\sin\frac{C}{2}}<2\le \frac{R}{r} \)
Se considera un triunghi \( ABC \) si I centrul cercului inscris acestuia.
Vom folosi inegalitatea \( AI+BI>AB \)
In triunghiul ABI din teorema sinusului avem: \( \frac{BI}{\sin\frac{A}{2}}=\frac{AI}{\sin\frac{B}{2}}=\frac{AB}{\sin(\frac{\pi}{2}+\frac{C}{2})}=\frac{AB}{\cos\frac{C}{2}}=\frac{BI+AI}{\sin\frac{A}{2}+\sin\frac{B}{2}}>\frac{AB}{\sin\frac{A}{2}+\sin\frac{B}{2}} \)
Deci \( \sin\frac{A}{2}+\sin\frac{B}{2}>\cos\frac{C}{2} \).De aici e clar
Feuerbach