Fie \( a,b,c \geq 0 \) astfel incat \( \frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}=2 \).
Demonstrati ca \( ab+bc+ca\leq \frac{3}{2} \).
Inegalitate conditionata
Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Conditia problemei este verificata cu substitutiile \( a=\sqrt{\frac{x}{y+z}} \) , \( b=\sqrt{\frac{y}{z+x}} \), \( c=\sqrt{\frac{z}{x+y}}(x,y,z>0) \).
Problema revine la a demonstra ca pentru orice \( x,y,z>0 \) are loc inegalitatea: \( \sum \sqrt{\frac{xy}{(z+x)(z+y)}} \leq \frac{3}{2}. \)
Conform inegalitatii \( AM-GM \) avem:
\( \sum \sqrt{\frac{xy}{(z+x)(z+y)}} \leq \sum \frac{\frac{x}{z+x}+\frac{y}{z+y}}{2}=\frac{3}{2} \)
Problema revine la a demonstra ca pentru orice \( x,y,z>0 \) are loc inegalitatea: \( \sum \sqrt{\frac{xy}{(z+x)(z+y)}} \leq \frac{3}{2}. \)
Conform inegalitatii \( AM-GM \) avem:
\( \sum \sqrt{\frac{xy}{(z+x)(z+y)}} \leq \sum \frac{\frac{x}{z+x}+\frac{y}{z+y}}{2}=\frac{3}{2} \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste