Inegalitate conditionata

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Inegalitate conditionata

Post by Beniamin Bogosel »

Fie \( a,b,c \geq 0 \) astfel incat \( \frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}=2 \).
Demonstrati ca \( ab+bc+ca\leq \frac{3}{2} \).
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Deconditionam :\( \frac{1}{a^2+1}=x \) etc. si obtinem inegalitatea \( \sum \sqrt{\frac{(1-x)(1-y)}{xy}} \leq \frac{3}{2} \) cu \( x+y+z=2 \) sau mai departe \( \sum{\sin\frac{A}{2}} \leq \frac {3}{2} \) unde A,B,C sunt unghiurile triunghiului cu laturile x,y,z.
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Conditia problemei este verificata cu substitutiile \( a=\sqrt{\frac{x}{y+z}} \) , \( b=\sqrt{\frac{y}{z+x}} \), \( c=\sqrt{\frac{z}{x+y}}(x,y,z>0) \).

Problema revine la a demonstra ca pentru orice \( x,y,z>0 \) are loc inegalitatea: \( \sum \sqrt{\frac{xy}{(z+x)(z+y)}} \leq \frac{3}{2}. \)
Conform inegalitatii \( AM-GM \) avem:
\( \sum \sqrt{\frac{xy}{(z+x)(z+y)}} \leq \sum \frac{\frac{x}{z+x}+\frac{y}{z+y}}{2}=\frac{3}{2} \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Post Reply

Return to “Inegalitati”