Daca \( p\geq 2 \) este un numar prim, atunci numarul
\( N=\sqrt{2}+\sqrt[3]{3}+\ldots+\sqrt[p]{p} \) este irational.
Numar irational cu radicali de numere prime
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Numar irational cu radicali de numere prime
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Baiatul destept
- Euclid
- Posts: 13
- Joined: Fri Oct 12, 2007 7:17 am
wer
Nu vad de ce nu ar merge pentru orice p natural..........
Un nebun pescuia intr-o cada.Un medic, cu o metoda proprie, il intreaba daca a prins ceva. Nebunul ii raspunde sever:"Bineinteles ca nu, prostule, nu vezi ca e o cada!"
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Re: wer
Pai asa m-am andit si eu, insa cica nu se stie exact nici pana acum daca pentru orice numar natural are loc ce am zis eu pentru numere prime.Baiatul destept wrote:Nu vad de ce nu ar merge pentru orice p natural..........
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.