Numar irational cu radicali de numere prime

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Numar irational cu radicali de numere prime

Post by Cezar Lupu »

Daca \( p\geq 2 \) este un numar prim, atunci numarul

\( N=\sqrt{2}+\sqrt[3]{3}+\ldots+\sqrt[p]{p} \) este irational.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
Baiatul destept
Euclid
Posts: 13
Joined: Fri Oct 12, 2007 7:17 am

wer

Post by Baiatul destept »

Nu vad de ce nu ar merge pentru orice p natural..........
Un nebun pescuia intr-o cada.Un medic, cu o metoda proprie, il intreaba daca a prins ceva. Nebunul ii raspunde sever:"Bineinteles ca nu, prostule, nu vezi ca e o cada!"
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Re: wer

Post by Cezar Lupu »

Baiatul destept wrote:Nu vad de ce nu ar merge pentru orice p natural..........
Pai asa m-am andit si eu, insa cica nu se stie exact nici pana acum daca pentru orice numar natural are loc ce am zis eu pentru numere prime. :)
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Post Reply

Return to “Teorie Galois”