By Mircea Lascu

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

By Mircea Lascu

Post by Claudiu Mindrila »

Sa se arate ca oricare ar fi numerele reale \( a,b,c>0 \) avem:
\( \frac{a^3+b^3+c^3}{3abc}+\frac{3\sqrt[3]{abc}}{a+b+c} \geq 2 \).

Mircea Lascu, G.M. 9/2005
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

\( a^3+b^3+c^3\geq\frac{(a+b+c)^3}{9} \) si notand

\( t=\frac{a+b+c}{3\sqrt[3]{abc}} \) avem \( t\geq1 \) si este suficient sa demonstram ca \( t^3+\frac{1}{t}\geq2 \) , ceea ce este evident deoarece

\( t^3 \)\( \geq \)\( t \)
Post Reply

Return to “Inegalitati”