Let M be the matrix
M=
(0 0 -1)
(0 1 1)
(1 1 1)
and the sequence
\( v_{n}=\cos(\pi \tr(M^n)) \)
1. Study the convergence of the series
\( w_n=\sum_{k=0}^{n}v_k \).
2. Is it bounded the sequence
\( y_n=\sum_{k=0}^{n}\cos(\pi a^k) \),
where \( a \) is the unique eigenvalue of \( M \)?
(From an exam this morning.)
Serie
Moderators: Mihai Berbec, Liviu Paunescu
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
1) (nice exam
)
Polinomul caracteristic al matricii este \( x^3-2x^2+x-1 \). Este cunoscuta relatia \( s_n=\tr(M^n)=x_1^n+x_2^n+x_3^n \), unde \( x_i \) sunt valorile proprii ale lui \( M \).
Folosind faptul ca valorile proprii verifica polinomul caracteristic obtinem reatia de recurenta: \( s_{n+3}=2s_{n+2}-s_{n+1}+s_n,\ \forall n \geq 0 \), cu \( s_0=3, s_1=s_2=2,\ s_3=5 \). Deoarece recurenta este cu coeficienti intregi si are primii trei termeni intregi, toate numerele \( s_k \) sunt intregi. Deoarece noi avem nevoie de informatii doar asupra paritatii lui \( s_k \) pentru ca \( \cos(n\pi)=(-1)^n \), vom reduce recurenta modulo 2 si obtinem ca \( s_{k+3}=s_{k+1}-s_k \). Astfel, scriind modulo 2 avem
\( s_0=1\\
s_1=0\\
s_2=0\\
s_3=1\\
s_4=0\\
s_5=1\\
s_6=1\\
s_7=1... \)
De fapt \( s_{k+7}=s_{k+5}-s_{k+4}=s_{k+3}-s_{k+1}=s_k \). Deci recurenta e periodica de perioada 7 modulo 2.
Atunci \( w_{7}=-1+1+1-1+1-1-1=-1 \) si \( w_{7n}=-n\to -\infty \). Deci seria nu este convergenta.
Polinomul caracteristic al matricii este \( x^3-2x^2+x-1 \). Este cunoscuta relatia \( s_n=\tr(M^n)=x_1^n+x_2^n+x_3^n \), unde \( x_i \) sunt valorile proprii ale lui \( M \).
Folosind faptul ca valorile proprii verifica polinomul caracteristic obtinem reatia de recurenta: \( s_{n+3}=2s_{n+2}-s_{n+1}+s_n,\ \forall n \geq 0 \), cu \( s_0=3, s_1=s_2=2,\ s_3=5 \). Deoarece recurenta este cu coeficienti intregi si are primii trei termeni intregi, toate numerele \( s_k \) sunt intregi. Deoarece noi avem nevoie de informatii doar asupra paritatii lui \( s_k \) pentru ca \( \cos(n\pi)=(-1)^n \), vom reduce recurenta modulo 2 si obtinem ca \( s_{k+3}=s_{k+1}-s_k \). Astfel, scriind modulo 2 avem
\( s_0=1\\
s_1=0\\
s_2=0\\
s_3=1\\
s_4=0\\
s_5=1\\
s_6=1\\
s_7=1... \)
De fapt \( s_{k+7}=s_{k+5}-s_{k+4}=s_{k+3}-s_{k+1}=s_k \). Deci recurenta e periodica de perioada 7 modulo 2.
Atunci \( w_{7}=-1+1+1-1+1-1-1=-1 \) si \( w_{7n}=-n\to -\infty \). Deci seria nu este convergenta.
Last edited by Beniamin Bogosel on Wed May 14, 2008 7:50 pm, edited 1 time in total.
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact: