Ecuatie diofantiana

Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata

Post Reply
User avatar
Sabin Salajan
Euclid
Posts: 29
Joined: Tue Apr 22, 2008 11:12 am
Location: Satu Mare

Ecuatie diofantiana

Post by Sabin Salajan »

Sa se arate ca ecuatia \( x^{3}+3=4y(y+1) \) nu are solutii intregi.

Problem-solving strategies, Arthur Engel
Last edited by Sabin Salajan on Tue May 13, 2008 5:35 pm, edited 1 time in total.
User avatar
Sabin Salajan
Euclid
Posts: 29
Joined: Tue Apr 22, 2008 11:12 am
Location: Satu Mare

Post by Sabin Salajan »

Adunam 1 si obtinem : \( x^{3}+4=(2y+1)^2 \)
Ducem 4 dincolo si avem \( x^3=(2y-1)\cdot(2y+3) \) ; \( 2y-1 \) si \( 2y+3 \) sunt prime intre ele (eventualul lor divizor comun trebuie sa divida 4, dar ele sunt impare, deci d=1).
Prin urmare, produsul lor fiind \( x^3 \), e necesar ca \( 2y-1 \) si \( 2y+3 \) sa fie cuburi, ori nu exista cuburi perfecte cu diferenta 4, asadar nu avem solutii.
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Lasa lumea sa gandeasca... :) nu posta solutia imediat...
User avatar
Sabin Salajan
Euclid
Posts: 29
Joined: Tue Apr 22, 2008 11:12 am
Location: Satu Mare

Post by Sabin Salajan »

ahh ...scuze ... :)
Post Reply

Return to “Teoria Numerelor”