JBTST II 2007, Problema 1

Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata

Post Reply
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

JBTST II 2007, Problema 1

Post by Laurian Filip »

Sa se determine numerele naturale \( n \geq 4 \) cu proprietatea ca \( [\sqrt{n}] + 1 \) divide \( n-1 \) si \( [\sqrt{n}] - 1 \) divide \( n+1 \).
Mole
Arhimede
Posts: 5
Joined: Mon Jan 05, 2009 2:08 pm

Post by Mole »

For the easiness of writing, let \( x=\lfloor \sqrt{n} \rfloor \)

\( n=x^2+y,y<2x \)

\( x+1\mid (x+1)(x-1)+y\rightarrow x+1\mid y \)

\( x-1\mid (x+1)(x-1)+y+2\rightarrow x-1\mid y+2 \)

1) \( y=0\rightarrow x\in {2,3}\rightarrow n\in {4,9} \)

2) \( y=x+1\rightarrow x-1\mid x+3\rightarrow x-1\mid 4\rightarrow x\in{2,3,5}\rightarrow n\in{7,13,31} \)
I can't speak Romanian, so I'll write in English. Hope you understand me!
Post Reply

Return to “Teoria Numerelor”