Inegalitate utila....

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
Ahiles
Euclid
Posts: 28
Joined: Thu Apr 17, 2008 4:26 pm

Inegalitate utila....

Post by Ahiles »

Fie \( x_1,x_2,...,x_n\geq0 \) cu \( x_1\cdot...\cdot x_n=1 \). Demonstrati inegalitiatea:
\( \sum x_i^{k+1}\geq\sum x_i^{k} \)
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Post by Marius Dragoi »

\( x_1x_2...x_n=1 \Rightarrow \frac {1}{n} (\sum_{i=1}^{n} {x_i}) \geq 1 \)

Acum avem: \( \sum_{i=1}^{n} {{x_i}^{k+1}} \) \( \geq \) \( \frac {1}{n} (\sum_{i=1}^{n} {x_i})(\sum_{i=1}^{n} {{x_i}^k}) \) \( \geq \) \( \sum_{i=1}^{n} {{x_i}^k} \) QED
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
Post Reply

Return to “Inegalitati”