Baraj Juniori Moldova problema 6

Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata

Post Reply
Ahiles
Euclid
Posts: 28
Joined: Thu Apr 17, 2008 4:26 pm

Baraj Juniori Moldova problema 6

Post by Ahiles »

Sa se rezolve in \( R \) ecuatia:
\( 2(x^2-3x+2)=3\sqrt{x^3+8} \)
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Facem schimbarea de variabila \( y+3=x \) si ridicand la patrat obtinem ecuatia
\( 4 y^4 + 15 y^3 - 29 y^3 - 195 y - 299=0 \) care se descompune \( (y^2-13)(4y^2+15y+23)=0 \). Deoarece factorul al doilea are discriminantul negativ, rezulta ca singurele solutii reale sunt \( y_1=\sqrt{13}, y_2=-\sqrt{13} \). Deci solutiile ecuatiei initiale sunt \( x_1=3+\sqrt{13},\ x_2=3-\sqrt{13} \).

Cam artificiala solutia, dar asta e... :wink:
Post Reply

Return to “Algebra”