Fie \( n \in \mathbb{N},\ n>0 \) si \( f: [0,1] \to \mathbb{R} \) o functie continua cu proprietatea \( \int_0^1(1-x^n)f(x)dx=0 \). Sa se arate ca \( \int_0^1f^2(x)dx\geq 2(n+1)( \int_0^1f(x)dx)^2 \).
Concursul “Grigore Moisil” 2008, Problema 2
Inegalitate integrala aproape clasica
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
-
Edgar Dobriban
- Euclid
- Posts: 10
- Joined: Sat Apr 05, 2008 12:47 pm
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Subiectele din 2008 de la concursul "Grigore Moisil"(Cluj) le puteti gasi aici .
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Demonstram urmatoarea lema :
Daca n>0 si \( g:[0,1]\rightarrow\mathbb{R} \) integrabila astfel incat \( \int_0^1g(x)dx=\int_0^1x^ng(x)dx=1, \) atunci \( \int_0^1g^2(x)dx\ge 2(n+1). \)
Apoi notand \( g(x)=\frac{f(x)}{\int_0^1f(x)dx} \) (evident daca numitorul e nenul) aplicam lema si gata.
Demonstratia lemei:
Cautam polinomul \( P(x)=ax^n+b \) care verifica ipotezele lemei. Acesta este \( P(x)=\frac{(n+1)(2n+1)}{n}x^n-\frac{n+1}{n} \).
Apoi \( 0\le \int_0^1(g(x)-Px))^2dx=\int_0^1g(x)(g(x)-P(x))dx-\int_0^1P(x)(g(x)-P(x))dx=\int_0^1g^2(x)dx-(a+b) \).
Asadar \( \int_0^1g^2(x)dx\ge a+b=2(n+1). \)
Daca n>0 si \( g:[0,1]\rightarrow\mathbb{R} \) integrabila astfel incat \( \int_0^1g(x)dx=\int_0^1x^ng(x)dx=1, \) atunci \( \int_0^1g^2(x)dx\ge 2(n+1). \)
Apoi notand \( g(x)=\frac{f(x)}{\int_0^1f(x)dx} \) (evident daca numitorul e nenul) aplicam lema si gata.
Demonstratia lemei:
Cautam polinomul \( P(x)=ax^n+b \) care verifica ipotezele lemei. Acesta este \( P(x)=\frac{(n+1)(2n+1)}{n}x^n-\frac{n+1}{n} \).
Apoi \( 0\le \int_0^1(g(x)-Px))^2dx=\int_0^1g(x)(g(x)-P(x))dx-\int_0^1P(x)(g(x)-P(x))dx=\int_0^1g^2(x)dx-(a+b) \).
Asadar \( \int_0^1g^2(x)dx\ge a+b=2(n+1). \)
-
Laurentiu Tucaa
- Thales
- Posts: 145
- Joined: Sun Mar 22, 2009 6:22 pm
- Location: Pitesti
Sau mai simplu cam pe aceeasi idee:
Cum \( \int_0^1 f(x)dx=\int_0^1 x^nf(x)dx \) aplicand CBS functiei \( x^nf(x) \) rezulta \( (\int_0^1 f(x)dx)^2=(\int_0^1 x^nf(x)dx)^2\le \int_0^1 f^2(x)dx)\int_0^1 x^{2n}dx \) de unde avem concluzia.
Edit: avem \( \int_0^1 x^{2n}dx=\frac{x^{2n+1}}{2n+1}\|_0^1=\frac{1}{2n+1} \), adica \( (2n+1)(\int_0^1 f(x)dx)^2\le\int_0^1 f^2(x)dx. \)
Cum \( \int_0^1 f(x)dx=\int_0^1 x^nf(x)dx \) aplicand CBS functiei \( x^nf(x) \) rezulta \( (\int_0^1 f(x)dx)^2=(\int_0^1 x^nf(x)dx)^2\le \int_0^1 f^2(x)dx)\int_0^1 x^{2n}dx \) de unde avem concluzia.
Edit: avem \( \int_0^1 x^{2n}dx=\frac{x^{2n+1}}{2n+1}\|_0^1=\frac{1}{2n+1} \), adica \( (2n+1)(\int_0^1 f(x)dx)^2\le\int_0^1 f^2(x)dx. \)
Last edited by Laurentiu Tucaa on Sun Oct 04, 2009 7:02 pm, edited 1 time in total.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)