Radicali liniar independenti peste corpul nr. rationale
Moderators: Filip Chindea, maky, Cosmin Pohoata
-
Mihai Berbec
- Pitagora
- Posts: 72
- Joined: Fri Feb 29, 2008 7:27 pm
- Contact:
Radicali liniar independenti peste corpul nr. rationale
Daca \( a,b,c \in \mathbb{Q} \) astfel incat \( \displaystyle a+b\cdot \sqrt[3]{2}+c\cdot \sqrt[3]{4}=0 \), atunci \( a=b=c=0 \).
-
Bogdan Cebere
- Thales
- Posts: 145
- Joined: Sun Nov 04, 2007 1:04 pm
Fie polinoamele \( P(X)={\frac{(a+2)}{2}}X^3+cX^2+bX-2 \) si \( Q(X)=X^3-2 \). Cum cele 2 polinoame au o radacina comuna si anume \( \sqrt[3]{2} \), au si un divizor comun. Dar cum \( Q \) este ireductibil peste \( Q[X] \)(criteriul lui Eisenstein) rezulta ca \( P=Q \). Deci \( {\frac{(a+2)}{2}}=1 \), adica \( a=b=c=0 \).