Inegalitatea 5, conditionata, cu x+y+z+xyz=4

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Inegalitatea 5, conditionata, cu x+y+z+xyz=4

Post by Cezar Lupu »

Fie \( x, y, z \) trei numere reale strict pozitive astfel incat \( x+y+z+xyz=4 \). Sa se arate ca \( x+y+z\geq xy+yz+zx \).


Olimpiada Belarus, 2002
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
pohoatza

Post by pohoatza »

Acelasi comentariu de inceput ca si la http://www.mateforum.ro/viewtopic.php?t=329.

O potentiala solutie cu AM-GM, ce nu prea a fost pe Mathlinks:
Presupunem ca \( x \leq y \leq z \).

Inegalitatea este echivalenta cu
\( x+y-xy \geq \frac{4-x-y}{xy+1}(x+y-1) \Leftrightarrow (x+y-2)^{2}\geq xy(x-1)(y-1) \).

Dar din AM-GM,
\( (x+y-2)^{2}\geq 4|(x-1)(y-1)| \geq xy|(x-1)(y-1)| \).
User avatar
maxim bogdan
Thales
Posts: 106
Joined: Tue Aug 19, 2008 1:56 pm
Location: Botosani

SCHUR

Post by maxim bogdan »

Presupunem prin absurd ca \( ab+bc+ca>a+b+c \).Din inegalitatea lui Schur obtinem:


\( \frac{9abc}{a+b+c}\ge 4(ab+bc+ca)-(a+b+c)^2>(a+b+c)(4-a-b-c)=abc(a+b+c) \).

Deci \( 9>(a+b+c)^2 \),de unde \( 3>a+b+c \)

Din inegalitatea mediilor obtinem ca \( abc\le 1 \).Cum \( a+b+c+abc=4 \), obtinem ca \( a+b+c\ge 3 \),ceea ce constituie o contradictie! Deci presupunerea facuta este falsa.

\( \Rightarrow a+b+c\ge ab+bc+ca \)
Feuerbach
User avatar
maxim bogdan
Thales
Posts: 106
Joined: Tue Aug 19, 2008 1:56 pm
Location: Botosani

Observatie!

Post by maxim bogdan »

Inegalitatea are loc si daca \( xy+yz+zx+xyz=4 \)
WLOG, presupunem ca: \( (x-1)(y-1)\geq 0 \). Relatia din enunt este echivalenta cu:

\( z(x+y+xy)=4-xy\Rightarrow z=\frac{4-xy}{x+y+xy}. \)

Avem: \( x+y+z-xy-yz-zx=x+y-xy+z(1-x-y)=x+y-xy+(1-x-y)(\frac{4-xy}{x+y+xy}). \)

\( =\frac{(x+y-xy)(x+y+xy)+(1-x-y)(4-xy)}{x+y+xy}. \)

\( =\frac{(x-y)^2+(4-xy)(x-1)(y-1)}{x+y+xy}\geq 0. \). Egalitatea are loc pentru \( x=y=z=1. \)

Din cate am citit aceasta inegalitatea a fost data la Baraj India 1998
Feuerbach
Post Reply

Return to “Inegalitati”