Formula lui Selberg

Moderator: Filip Chindea

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Formula lui Selberg

Post by Cezar Lupu »

Daca \( x\geq 1 \) atunci are loc urmatoarea estimare:

\( \psi(x)\log x+\sum_{n\leq x}\psi\left(\frac{x}{n}\right)\Lambda(n)=2x\log x+O(x) \), unde \( \Lambda \) reprezinta functia lui von Mongoldt si este definita pentru orice numar natural \( n\geq 0 \), astfel:

\( \Lambda(n)=\log p \), daca \( n=p^{m} \), unde \( p \) este numar prim si \( m>0 \), iar \( \Lambda(n)=0 \) in restul cazurilor.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Post Reply

Return to “Teoria analitica a numerelor”