f:R->R^2

Moderators: Mihai Berbec, Liviu Paunescu

Post Reply
Kakeyaconjecture
Posts: 4
Joined: Fri Oct 24, 2008 12:13 pm
Location: Cluj

f:R->R^2

Post by Kakeyaconjecture »

Fie \( f:\mathbb{R}\to \mathbb{R}^2 \) o functie continua pentru care avem \( f(x)=f(x+1) \forall x \) si fie \( t \in [0,1/4] \). Sa se arate ca exista \( $x$ \) astfel incat vectorul \( $\vec{f(x-t)f(x+t)}$ \) sa fie perpendicular pe vectorul \( \vec{f(x)f(x+1/2)} \).
User avatar
Liviu Paunescu
Pitagora
Posts: 84
Joined: Wed Sep 26, 2007 6:57 pm

Post by Liviu Paunescu »

Functia aia este un drum in \( \mathbb{R}^2 \). Trebuie gasit un \( x \) astfel incat:

\( <f(x)-f(x+1/2),f(x-t)-f(x+t)>=0 \) (produs scalar)

Existenta rezulta fiindca \( \int_{x=0}^1<f(x)-f(x+1/2),f(x-t)-f(x+t)>=0 \) datorita egalitatilor:

\( \int_{x=0}^1<f(x),f(x-t)>=\int_{x=0}^1<f(x+t),f(x)>=\int_{x=0}^1<f(x),f(x+t)> \) si

\( \int_{x=0}^1<f(x+1/2),f(x-t)>=\int_{x=0}^1<f(x+1/2+1/2+t),f(x-t+1/2+t)>= \int_{x=0}^1<f(x+t),f(x+1/2)> \)
Mesajul Depeche Mode pentru matematicieni:
"You'll see your problems multiplied
If you continually decide
To faithfully pursue
The policy of truth"
Kakeyaconjecture
Posts: 4
Joined: Fri Oct 24, 2008 12:13 pm
Location: Cluj

Post by Kakeyaconjecture »

De unde vine relatia:
\( \int_{x=0}^1<f(x),f(x-t)>=\int_{x=0}^1<f(x+t),f(x)>=\int_{x=0}^1<f(x),f(x+t)> \)?
User avatar
Liviu Paunescu
Pitagora
Posts: 84
Joined: Wed Sep 26, 2007 6:57 pm

Post by Liviu Paunescu »

Pai din periodicitatea lui \( f \) si o mica schimbare de variabila.

\( \int_{x=0}^1<f(x-t),f(x)>=\int_{x=-t}^{1-t}<f(x),f(x+t)> \), asta a fost schimbarea de variabila.

\( \int_{x=-t}^{1-t}<f(x),f(x+t)>=\int_{x=0}^{1-t}<f(x),f(x+t)>+ \int_{x=-t}^{0}<f(x),f(x+t)>= \)
\( =\int_{x=0}^{1-t}<f(x),f(x+t)>+ \int_{x=1-t}^{1}<f(x),f(x+t)>=\int_{x=0}^{1}<f(x),f(x+t)> \) si asta a fost periodicitatea.
Mesajul Depeche Mode pentru matematicieni:
"You'll see your problems multiplied
If you continually decide
To faithfully pursue
The policy of truth"
Post Reply

Return to “Analiza reala”