f:R->R^2
Moderators: Mihai Berbec, Liviu Paunescu
-
Kakeyaconjecture
- Posts: 4
- Joined: Fri Oct 24, 2008 12:13 pm
- Location: Cluj
f:R->R^2
Fie \( f:\mathbb{R}\to \mathbb{R}^2 \) o functie continua pentru care avem \( f(x)=f(x+1) \forall x \) si fie \( t \in [0,1/4] \). Sa se arate ca exista \( $x$ \) astfel incat vectorul \( $\vec{f(x-t)f(x+t)}$ \) sa fie perpendicular pe vectorul \( \vec{f(x)f(x+1/2)} \).
- Liviu Paunescu
- Pitagora
- Posts: 84
- Joined: Wed Sep 26, 2007 6:57 pm
Functia aia este un drum in \( \mathbb{R}^2 \). Trebuie gasit un \( x \) astfel incat:
\( <f(x)-f(x+1/2),f(x-t)-f(x+t)>=0 \) (produs scalar)
Existenta rezulta fiindca \( \int_{x=0}^1<f(x)-f(x+1/2),f(x-t)-f(x+t)>=0 \) datorita egalitatilor:
\( \int_{x=0}^1<f(x),f(x-t)>=\int_{x=0}^1<f(x+t),f(x)>=\int_{x=0}^1<f(x),f(x+t)> \) si
\( \int_{x=0}^1<f(x+1/2),f(x-t)>=\int_{x=0}^1<f(x+1/2+1/2+t),f(x-t+1/2+t)>= \int_{x=0}^1<f(x+t),f(x+1/2)> \)
\( <f(x)-f(x+1/2),f(x-t)-f(x+t)>=0 \) (produs scalar)
Existenta rezulta fiindca \( \int_{x=0}^1<f(x)-f(x+1/2),f(x-t)-f(x+t)>=0 \) datorita egalitatilor:
\( \int_{x=0}^1<f(x),f(x-t)>=\int_{x=0}^1<f(x+t),f(x)>=\int_{x=0}^1<f(x),f(x+t)> \) si
\( \int_{x=0}^1<f(x+1/2),f(x-t)>=\int_{x=0}^1<f(x+1/2+1/2+t),f(x-t+1/2+t)>= \int_{x=0}^1<f(x+t),f(x+1/2)> \)
Mesajul Depeche Mode pentru matematicieni:
"You'll see your problems multiplied
If you continually decide
To faithfully pursue
The policy of truth"
"You'll see your problems multiplied
If you continually decide
To faithfully pursue
The policy of truth"
-
Kakeyaconjecture
- Posts: 4
- Joined: Fri Oct 24, 2008 12:13 pm
- Location: Cluj
- Liviu Paunescu
- Pitagora
- Posts: 84
- Joined: Wed Sep 26, 2007 6:57 pm
Pai din periodicitatea lui \( f \) si o mica schimbare de variabila.
\( \int_{x=0}^1<f(x-t),f(x)>=\int_{x=-t}^{1-t}<f(x),f(x+t)> \), asta a fost schimbarea de variabila.
\( \int_{x=-t}^{1-t}<f(x),f(x+t)>=\int_{x=0}^{1-t}<f(x),f(x+t)>+ \int_{x=-t}^{0}<f(x),f(x+t)>= \)
\( =\int_{x=0}^{1-t}<f(x),f(x+t)>+ \int_{x=1-t}^{1}<f(x),f(x+t)>=\int_{x=0}^{1}<f(x),f(x+t)> \) si asta a fost periodicitatea.
\( \int_{x=0}^1<f(x-t),f(x)>=\int_{x=-t}^{1-t}<f(x),f(x+t)> \), asta a fost schimbarea de variabila.
\( \int_{x=-t}^{1-t}<f(x),f(x+t)>=\int_{x=0}^{1-t}<f(x),f(x+t)>+ \int_{x=-t}^{0}<f(x),f(x+t)>= \)
\( =\int_{x=0}^{1-t}<f(x),f(x+t)>+ \int_{x=1-t}^{1}<f(x),f(x+t)>=\int_{x=0}^{1}<f(x),f(x+t)> \) si asta a fost periodicitatea.
Mesajul Depeche Mode pentru matematicieni:
"You'll see your problems multiplied
If you continually decide
To faithfully pursue
The policy of truth"
"You'll see your problems multiplied
If you continually decide
To faithfully pursue
The policy of truth"